SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wolfson Tanya) "

Sökning: WFRF:(Wolfson Tanya)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Covarrubias, Yesenia, et al. (författare)
  • Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity
  • 2019
  • Ingår i: Journal of Magnetic Resonance Imaging. - : WILEY. - 1053-1807 .- 1522-2586. ; 50:4, s. 1092-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Quantitative-chemical-shift-encoded (CSE)-MRI methods have been applied to the liver. The feasibility and potential utility CSE-MRI in monitoring changes in pancreatic proton density fat fraction (PDFF) have not yet been demonstrated. Purpose To use quantitative CSE-MRI to estimate pancreatic fat changes during a weight-loss program in adults with severe obesity and nonalcoholic fatty liver disease (NAFLD). To explore the relationship of reduction in pancreatic PDFF with reductions in anthropometric indices. Study Type Prospective/longitudinal. Population Nine adults with severe obesity and NAFLD enrolled in a weight-loss program. Field Strength/Sequence CSE-MRI fat quantification techniques and multistation-volumetric fat/water separation techniques were performed at 3 T. Assessment PDFF values were recorded from parametric maps colocalized across timepoints. Statistical Tests Rates of change of log-transformed variables across time were determined (linear-regression), and their significance assessed compared with no change (Wilcoxon test). Rates of change were correlated pairwise (Spearmans correlation). Results Mean pancreatic PDFF decreased by 5.7% (range 0.7-17.7%) from 14.3 to 8.6%, hepatic PDFF by 11.4% (2.6-22.0%) from 14.8 to 3.4%, weight by 30.9 kg (17.3-64.2 kg) from 119.0 to 88.1 kg, body mass index by 11.0 kg/m(2) (6.3-19.1 kg/m(2)) from 44.1 to 32.9 kg/m(2), waist circumference (WC) by 25.2 cm (4.0-41.0 cm) from 133.1 to 107.9 cm, HC by 23.5 cm (4.5-47.0 cm) from 135.8 to 112.3 cm, visceral adipose tissue (VAT) by 2.9 L (1.7-5.7 L) from 7.1 to 4.2 L, subcutaneous adipose tissue (SCAT) by 4.0 L (2.9-7.4 L) from 15.0 to 11.0 L. Log-transformed rate of change for pancreatic PDFF was moderately correlated with log-transformed rates for hepatic PDFF, VAT, SCAT, and WC (rho = 0.5, 0.47, 0.45, and 0.48, respectively), although not statistically significant. Data Conclusion Changes in pancreatic PDFF can be estimated by quantitative CSE-MRI in adults undergoing a weight-loss surgery program. Pancreatic and hepatic PDFF and anthropometric indices decreased significantly. Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;50:1092-1102.
  •  
2.
  • Middleton, Michael, et al. (författare)
  • Quantifying Abdominal Adipose Tissue and Thigh Muscle Volume and Hepatic Proton Density Fat Fraction : Repeatability and Accuracy of an MR Imaging–based, Semiautomated Analysis Method
  • 2017
  • Ingår i: Radiology. - : Radiological Society of North America, Inc.. - 0033-8419 .- 1527-1315. ; 283:2, s. 438-449
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe purpose of this study was to determine the repeatability and accuracy of an   commercially available (Advanced MR Analytics [AMRA®]; Linköping, Sweden) magnetic resonance imaging (MRI)-based, semi-automated method to quantify abdominal adipose tissue and thigh muscle volume as well as hepatic proton density fat fraction (PDFF)Materials and MethodsThis prospective study was approved by an institutional review board (IRB) and was Health Insurance Portability and Accountability Act (HIPAA) compliant. All subjects provided written informed consent. Inclusion criteria were age ≥ 18 years, and willingness to participate. Exclusion criteria were contraindication to MRI. Three-dimensional, T1-weighted, dual-echo body-coil images were acquired from base of skull to knees at 3T, twice before and once after taking subjects off the scanner table (total of three acquisitions). Source images were reconstructed offline to generate water, and calibrated fat images where pure adipose tissue has unit value and absence of adipose tissue has zero value. Abdominal adipose tissues and thigh muscles were segmented, and their volumes estimated using AMRA  a semi-automated analysis method and, as a reference standard, manually. Hepatic PDFF was estimated using a confounder-corrected chemical-shift encoded MRI method with hybrid complex-magnitude reconstruction., and, as a reference standard, with magnetic resonance spectroscopy (MRS). Tissue volume and hepatic PDFF intra- and inter-examination repeatability was assessed by intraclass correlation (ICC) and coefficient of variation (CV) analysis. Tissue volume and hepatic PDFF accuracies were assessed by linear regression using their respective reference standards.ResultsTwenty adult subjects were enrolled (18 female, age range 25 - 76 yrs, body mass index range 19.3 to 43.9 kg/m2). Adipose and thigh muscle tissue volumes estimated using the semi-automated analysis method had intra-and inter-examination ICCs between 0.996 and 0.998, and CVs between 1.5 and 3.6%. For hepatic MRI PDFF, intra- and inter-examination ICCs were ≥ 0.994 and CVs, ≤ 7.3%. Agreement between semi-automated and manual volume estimates, and between MRI and MRS hepatic PDFF estimates, was high, with regression slopes and intercepts not significantly different from the identity line (all p’s > 0.05), and R2’s between 0.744 and 0.994.ConclusionsThis MRI-based, semi-automated method provides high repeatability, and high accuracy for estimating abdominal adipose tissue and thigh muscle volumes, and hepatic PDFF.
  •  
3.
  • Middleton, Michael, et al. (författare)
  • Repeatability and accuracy of a novel, MRI-based, semi-automated analysis method for quantifying abdominal adipose tissue and thigh muscle volumes
  • 2016
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Current MRI methods to estimate body tissue compartment volumes rely on manual segmentation, which is laborious, expensive, not widely available outside specialized centers, and not standardized. To address these concerns, a novel, semi-automated image analysis method has been developed. Image acquisition takes about six minutes, and uses widely available MRI pulse sequences. We found that this method permits comprehensive body compartment analysis and provides high repeatability and accuracy. Current and future clinical and drug development studies may benefit from this methodology, as may clinical settings where monitoring change in these measures is desired.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy