SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Cheng 1985) "

Sökning: WFRF:(Wu Cheng 1985)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Weinstein, John N., et al. (författare)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Forskningsöversikt (refereegranskat)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
3.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Bell, David M., et al. (författare)
  • Particle-phase processing of α-pinene NO3 secondary organic aerosol in the dark
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 22, s. 13167-13182
  • Tidskriftsartikel (refereegranskat)abstract
    • The NO3 radical represents a significant nighttime oxidant which is present downstream of polluted environments. Existing studies have investigated the formation of secondary organic aerosol (SOA) from NO3 radicals, focusing on the yields, general composition, and hydrolysis of organonitrates; however, there is limited knowledge about how the composition of NO3-derived SOA evolves as a result of particle-phase reactions. Here, SOA was formed from the reaction of α-pinene with NO3 radicals generated from N2O5, and the resulting SOA was aged in the dark. The initial composition of NO3-derived α-pinene SOA was slightly dependent upon the concentration of N2O5 injected (excess of NO3 or excess of α-pinene) but was largely dominated by dimer dinitrates (C20H32N2O8-13). Oxidation reactions (e.g., C20H32N2O8 → C20H32N2O9 → C20H32N2O10) accounted for 60 %-70 % of the particle-phase reactions observed. Fragmentation reactions and dimer degradation pathways made up the remainder of the particle-phase processes occurring. The exact oxidant is not known, although suggestions are offered (e.g., N2O5, organic peroxides, or peroxynitrates). Hydrolysis of -ONO2 functional groups was not an important loss term during dark aging under the relative humidity conditions of our experiments (58 %-62 %), and changes in the bulk organonitrate composition were likely driven by evaporation of highly nitrogenated molecules. Overall, 25 %-30 % of the particle-phase composition changes as a function of particle-phase reactions during dark aging, representing an important atmospheric aging pathway.
  •  
5.
  • Cai, Jing, et al. (författare)
  • Characterization of offline analysis of particulate matter with FIGAERO-CIMS
  • 2023
  • Ingår i: Atmospheric Measurement Techniques (AMT). - : Copernicus GmbH. - 1867-8610 .- 1867-8548 .- 1867-1381. ; 16:5, s. 1147-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of the molecular composition of organic aerosol (OA) constituents improve our understanding of sources, formation processes, and physicochemical properties of OA. One instrument providing such data at a time resolution of minutes to hours is the chemical ionization time-of-flight mass spectrometer with filter inlet for gases and aerosols (FIGAERO-CIMS). The technique collects particles on a filter, which are subsequently desorbed, and the evaporated molecules are ionized and analyzed in the mass spectrometer. However, long-term measurements using this technique and/or field deployments at several sites simultaneously require substantial human and financial resources. The analysis of filter samples collected outside the instrument (offline) may provide a more cost-efficient alternative and makes this technology available for the large number of particle filter samples collected routinely at many different sites globally. Filter-based offline use of the FIGAERO-CIMS limits this method, albeit to particle-phase analyses, which is likely at a reduced time resolution compared to online deployments. Here we present the application and assessment of offline FIGAERO-CIMS, using Teflon and quartz fiber filter samples that were collected in autumn 2018 in urban Beijing. We demonstrate the feasibility of the offline application with a “sandwich” sample preparation for the over 900 identified organic compounds with (1) high signal-to-noise ratios, (2) high repeatability, and (3) linear signal response to the filter loadings. Comparable overall signals were observed between the quartz fiber and Teflon filters for 12 and 24h samples but with larger signals for semi-volatile compounds for the quartz fiber filters, likely due to adsorption artifacts. We also compare desorption profile (thermogram) shapes for the two filter materials. Thermograms are used to derive volatility qualitatively based on the desorption temperature at which the maximum signal intensity of a compound is observed (Tmax). While we find that Tmax can be determined with high repeatability (±5.7∘C) from the duplicate tests for one filter type, we observe considerable differences in Tmax between the quartz and Teflon filters, warranting further investigation into the thermal desorption characteristics of different filter types. Overall, this study provides a basis for expanding OA molecular characterization by FIGAERO-CIMS to situations where and when deployment of the instrument itself is not possible.
  •  
6.
  • Cai, Jing, et al. (författare)
  • Elucidating the mechanisms of atmospheric new particle formation in the highly polluted Po Valley, Italy
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2423-2441
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation (NPF) is a major source of aerosol particles and cloud condensation nuclei in the troposphere, playing an important role in both air quality and climate. Frequent NPF events have been observed in heavily polluted urban environments, contributing to the aerosol number concentration by a significant amount. The Po Valley region in northern Italy has been characterized as a hotspot for high aerosol loadings and frequent NPF events in southern Europe. However, the mechanisms of NPF and growth in this region are not completely understood. In this study, we conducted a continuous 2-month measurement campaign with state-of-the-art instruments to elucidate the NPF and growth mechanisms in northern Italy. Our results demonstrate that frequent NPF events (66% of all days during the measurement campaign) are primarily driven by abundant sulfuric acid (8.5×106cm-3) and basic molecules in this area. In contrast, oxygenated organic molecules from the atmospheric oxidation of volatile organic compounds (VOCs) appear to play a minor role in the initial cluster formation but contribute significantly to the consecutive growth process. Regarding alkaline molecules, amines are insufficient to stabilize all sulfuric acid clusters in the Po Valley. Ion cluster measurements and kinetic models suggest that ammonia (10ppb) must therefore also play a role in the nucleation process. Generally, the high formation rates of sub-2nm particles (87cm-3s-1) and nucleation-mode growth rates (5.1nmh-1) as well as the relatively low condensational sink (8.9×10-3s-1) will result in a high survival probability for newly formed particles, making NPF crucial for the springtime aerosol number budget. Our results also indicate that reducing key pollutants, such as SO2, amine and NH3, could help to substantially decrease the particle number concentrations in the Po Valley region.
  •  
7.
  • Cai, Jing, et al. (författare)
  • Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 22, s. 1251-1269
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic aerosol (OA) is a major component of fine particulate matter (PM), affecting air quality, human health, and the climate. The absorptive and reflective behavior of OA components contributes to determining particle optical properties and thus their effects on the radiative budget of the troposphere. There is limited knowledge on the influence of the molecular composition of OA on particle optical properties in the polluted urban environment. In this study, we characterized the molecular composition of oxygenated OA collected on filter samples in the autumn of 2018 in Beijing, China, with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). Three haze episodes occurred during our sampling period with daily maximum concentrations of OA of 50, 30, and 55 μg m-3. We found that the signal intensities of dicarboxylic acids and sulfur-containing compounds increased during the two more intense haze episodes, while the relative contributions of wood-burning markers and other aromatic compounds were enhanced during the cleaner periods. We further assessed the optical properties of oxygenated OA components by combining detailed chemical composition measurements with collocated particle light absorption measurements. We show that light absorption enhancement (Eabs) of black carbon (BC) was mostly related to more oxygenated OA (e.g., dicarboxylic acids), likely formed in aqueous-phase reactions during the intense haze periods with higher relative humidity, and speculate that they might contribute to lensing effects. Aromatics and nitro-aromatics (e.g., nitrocatechol and its derivatives) were mostly related to a high light absorption coefficient (babs) consistent with light-absorbing (brown) carbon (BrC). Our results provide information on oxygenated OA components at the molecular level associated with BrC and BC particle light absorption and can serve as a basis for further studies on the effects of anthropogenic OA on radiative forcing in the urban environment. Copyright:
  •  
8.
  • Graham, Emelie L., 1989-, et al. (författare)
  • Volatility of aerosol particles from NO3 oxidation of various biogenic organic precursors
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23, s. 7347-7362
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary organic aerosol (SOA) is formed through the oxidation of volatile organic compounds (VOCs), which can be of both natural and anthropogenic origin. While the hydroxyl radical (OH) and ozone (O3) are the main atmospheric oxidants during the day, the nitrate radical (NO3) becomes more important during the nighttime. Yet, atmospheric nitrate chemistry has received less attention compared to OH and O3. The Nitrate Aerosol and Volatility Experiment (NArVE) aimed to study the NO3-induced SOA formation and evolution from three biogenic VOCs (BVOCs), namely isoprene, α-pinene, and β-caryophyllene. The volatility of aerosol particles was studied using isothermal evaporation chambers, temperature-dependent evaporation in a volatility tandem differential mobility analyzer (VTDMA), and thermal desorption in a filter inlet for gases and aerosols coupled to a chemical ionization mass spectrometer (FIGAERO-CIMS). Data from these three setups present a cohesive picture of the volatility of the SOA formed in the dark from the three biogenic precursors. Under our experimental conditions, the SOA formed from NO3+α-pinene was generally more volatile than SOA from α-pinene ozonolysis, while the NO3 oxidation of isoprene produced similar although slightly less volatile SOA than α-pinene under our experimental conditions. β-Caryophyllene reactions with NO3 resulted in the least volatile species. Four different parameterizations for estimating the saturation vapor pressure of the oxidation products were tested for reproducing the observed evaporation in a kinetic modeling framework. Our results show that the SOA from nitrate oxidation of α-pinene or isoprene is dominated by low-volatility organic compounds (LVOCs) and semi-volatile organic compounds (SVOCs), while the corresponding SOA from β-caryophyllene consists primarily of extremely low-volatility organic compounds (ELVOCs) and LVOCs. The parameterizations yielded variable results in terms of reproducing the observed evaporation, and generally the comparisons pointed to a need for re-evaluating the treatment of the nitrate group in such parameterizations. Strategies for improving the predictive power of the volatility parameterizations, particularly in relation to the contribution from the nitrate group, are discussed.
  •  
9.
  • Heitto, Arto, et al. (författare)
  • Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24, s. 1315-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • Early growth of atmospheric particles is essential for their survival and ability to participate in cloud formation. Many different atmospheric vapors contribute to the growth, but even the main contributors still remain poorly identified in many environments, such as high-altitude sites. Based on measured organic vapor and sulfuric acid concentrations under ambient conditions, particle growth during new particle formation events was simulated and compared with the measured particle size distribution at the Chacaltaya Global Atmosphere Watch station in Bolivia (5240ma.s.l.) during April and May 2018, as a part of the SALTENA (Southern Hemisphere high-ALTitude Experiment on particle Nucleation and growth) campaign. Despite the challenging topography and ambient conditions around the station, the simple particle growth model used in the study was able to show that the detected vapors were sufficient to explain the observed particle growth, although some discrepancies were found between modeled and measured particle growth rates. This study, one of the first of such studies conducted on high altitude, gives insight on the key factors affecting the particle growth on the site and helps to improve the understanding of important factors on high-altitude sites and the atmosphere in general. Low-volatility organic compounds originating from multiple surrounding sources such as the Amazonia and La Paz metropolitan area were found to be the main contributor to the particle growth, covering on average 65% of the simulated particle mass in particles with a diameter of 30nm. In addition, sulfuric acid made a major contribution to the particle growth, covering at maximum 37% of the simulated particle mass in 30nm particles during periods when volcanic activity was detected on the area, compared to around 1% contribution on days without volcanic activity. This suggests that volcanic emissions can greatly enhance the particle growth.
  •  
10.
  • Huang, Wei, et al. (författare)
  • Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2607-2624
  • Tidskriftsartikel (refereegranskat)abstract
    • The apparent volatility of atmospheric organic aerosol (OA) particles is determined by their chemical composition and environmental conditions (e.g., ambient temperature). A quantitative, experimental assessment of volatility and the respective importance of these two factors remains challenging, especially in ambient measurements. We present molecular composition and volatility of oxygenated OA (OOA) particles in different rural, urban, and mountain environments (including Chacaltaya, Bolivia; Alabama, US; Hyytiälä, Finland; Stuttgart and Karlsruhe, Germany; and Delhi, India) based on deployments of a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). We find on average larger carbon numbers (nC) and lower oxygen-To-carbon (O:C) ratios at the urban sites (nC: 9.8±0.7; O:C: 0.76±0.03; average ±1 standard deviation) compared to the rural (nC: 8.8±0.6; O:C: 0.80±0.05) and mountain stations (nC: 8.1±0.8; O:C: 0.91±0.07), indicative of different emission sources and chemistry. Compounds containing only carbon, hydrogen, and oxygen atoms (CHO) contribute the most to the total OOA mass at the rural sites (79.9±5.2%), in accordance with their proximity to forested areas (66.2±5.5% at the mountain sites and 72.6±4.3% at the urban sites). The largest contribution of nitrogen-containing compounds (CHON) is found at the urban stations (27.1±4.3%), consistent with their higher NOx levels. Moreover, we parametrize OOA volatility (saturation mass concentrations, Csat) using molecular composition information and compare it with the bulk apparent volatility derived from thermal desorption of the OOA particles within the FIGAERO. We find differences in Csat values of up to 1/43 orders of magnitude and variation in thermal desorption profiles (thermograms) across different locations and systems. From our study, we draw the general conclusion that environmental conditions (e.g., ambient temperature) do not directly affect OOA apparent volatility but rather indirectly by influencing the sources and chemistry of the environment and thus the chemical composition. The comprehensive dataset provides results that show the complex thermodynamics and chemistry of OOA and their changes during its lifetime in the atmosphere. We conclude that generally the chemical description of OOA suffices to predict its apparent volatility, at least qualitatively. Our study thus provides new insights that will help guide choices of, e.g., descriptions of OOA volatility in different model frameworks such as air quality models and cloud parcel models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (21)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (22)
Författare/redaktör
Wu, Cheng, 1985 (17)
Mohr, Claudia (9)
Huang, Wei (5)
Bianchi, Federico (4)
Gramlich, Yvette (4)
Krejci, Radovan (3)
visa fler...
Aliaga, Diego (3)
Kulmala, Markku (3)
Baltensperger, Urs (3)
Hallquist, Mattias, ... (3)
Bell, David M. (3)
Bertrand, Amelie (3)
Cai, Jing (3)
Zha, Qiaozhi (3)
Mentel, Th F. (3)
Kulmala, M (2)
Bianchi, F. (2)
Riipinen, Ilona (2)
Laj, Paolo (2)
Zhang, Wei (2)
Andrade, Marcos (2)
Yli-Juuti, Taina (2)
Prevot, Andre S. H. (2)
Huang, W (2)
Heikkinen, Liine (2)
Li, Jun (2)
Mentel, Thomas F. (2)
Priestley, Michael (2)
Ehn, Mikael (2)
Schoonbaert, Janne (2)
Giannoukos, Stamatio ... (2)
El Haddad, Imad (2)
Wildt, J. (2)
Wildt, Jürgen (2)
Aliaga, D. (2)
Hansel, A. (2)
Carbone, S. (2)
Andrade, M. (2)
Heikkinen, Liine, 19 ... (2)
Mohr, Claudia, 1982- (2)
Kiendler-Scharr, A. (2)
Daellenbach, Kaspar ... (2)
Zheng, Feixue (2)
Du, Wei (2)
Cai, Runlong (2)
Ciarelli, Giancarlo (2)
Velarde, Fernando (2)
Kleist, E. (2)
Haslett, Sophie L., ... (2)
Chen, Xuemeng (2)
visa färre...
Lärosäte
Göteborgs universitet (20)
Stockholms universitet (11)
Chalmers tekniska högskola (5)
Uppsala universitet (2)
Lunds universitet (2)
Högskolan i Halmstad (1)
visa fler...
Handelshögskolan i Stockholm (1)
Karolinska Institutet (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Medicin och hälsovetenskap (2)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy