SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Chuansha) "

Sökning: WFRF:(Wu Chuansha)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Yachen, et al. (författare)
  • Intrauterine and early postnatal exposures to submicron particulate matter and childhood allergic rhinitis : A multicity cross-sectional study in China
  • 2024
  • Ingår i: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 247
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airborne particulate matter pollution has been linked to occurrence of childhood allergic rhinitis (AR). However, the relationships between exposure to particulate matter with an aerodynamic diameter <= 1 µm (PM1) during early life (in utero and first year of life) and the onset of childhood AR remain largely unknown. This study aims to investigate potential associations of in utero and first-year exposures to size-segregated PMs, including PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10, with childhood AR.Methods: We investigated 29286 preschool children aged 3-6 years in 7 Chinese major cities during 2019-2020 as the Phase II of the China Children, Families, Health Study. Machine learning-based space-time models were utilized to estimate early-life residential exposure to PM1, PM2.5, and PM10 at 1 x 1-km resolutions. The concentrations of PM1-2.5 and PM2.5-10 were calculated by subtracting PM1 from PM2.5 and PM2.5 from PM10, respectively. Multiple mixed-effects logistic models were used to assess the odds ratios (ORs) and 95% confidence intervals (CIs) of childhood AR associated with per 10-µg/m3 increase in exposure to particulate air pollution during in utero period and the first year of life.Results: Among the 29286 children surveyed (mean +/- standard deviation, 4.9 +/- 0.9 years), 3652 (12.5%) were reported to be diagnosed with AR. Average PM1 concentrations during in utero period and the first year since birth were 36.3 +/- 8.6 µg/m3 and 33.1 +/- 6.9 µg/m3, respectively. Exposure to PM1 and PM2.5 during pregnancy and the first year of life was associated with an increased risk of AR in children, and the OR estimates were higher for each 10-µg/m3 increase in PM1 than for PM2.5 (e.g., 1.132 [95% CI: 1.022-1.254] vs. 1.079 [95% CI: 1.014-1.149] in pregnancy; 1.151 [95% CI: 1.014-1.306] vs. 1.095 [95% CI: 1.008-1.189] in the first year of life). No associations were observed between AR and both pre- and post-natal exposure to PM1-2.5, indicating that PM1 rather than PM1-2.5 contributed to the association between PM2.5 and childhood AR. In trimester-stratified analysis, childhood AR was only found to be associated with exposure to PM1 (OR = 1.077, 95% CI: 1.027-1.128), PM2.5 (OR = 1.048, 95% CI: 1.018-1.078), and PM10 (OR = 1.032, 95% CI: 1.007-1.058) during the third trimester of pregnancy. Subgroup analysis suggested stronger PM-AR associations among younger (<5 years old) and winter-born children.Conclusions: Prenatal and postnatal exposures to ambient PM1 and PM2.5 were associated with an increased risk of childhood AR, and PM2.5-related hazards could be predominantly attributed to PM1. These findings highlighted public health significance of formulating air quality guideline for ambient PM1 in mitigating children's AR burden caused by particulate air pollution.
  •  
2.
  • Pan, Yitao, et al. (författare)
  • Novel Chlorinated Polyfluorinated Ether Sulfonates and Legacy Per-/Polyfluoroalkyl Substances : Placental Transfer and Relationship with Serum Albumin and Glomerular Filtration Rate
  • 2017
  • Ingår i: Environmental Science and Technology. - Dordrecht, Neteherlands : Springer Netherlands. - 0013-936X .- 1520-5851. ; 51:1, s. 634-644
  • Tidskriftsartikel (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFASs) may cross the placental barrier and lead to fetal exposure. However, little is known about the factors that influence maternal-fetal transfer of these chemicals. PFAS concentrations were analyzed in 100 paired samples of human maternal sera collected in each trimester and cord sera at delivery; these samples were collected in Wuhan, China, 2014. Linear regression was used to estimate associations of transfer efficiencies with factors. Chlorinated polyfluorinated ether sulfonates (Cl-PFAESs, 6:2 and 8:2) were frequently detected (>99%) in maternal and cord sera. A significant decline in PFAS levels during the three trimesters was observed. A U-shape trend for transfer efficiency with increasing chain length was observed for both carboxylates and sulfonates. Higher transfer efficiencies of PFASs were associated with advancing maternal age, higher education, and lower glomerular filtration rate (GFR). Cord serum albumin was a positive factors for higher transfer efficiency (increased 1.1-4.1% per 1g/L albumin), whereas maternal serum albumin tended to reduce transfer efficiency (decreased 2.4-4.3% per 1g/L albumin). Our results suggest that exposure to Cl-PFAESs may be widespread in China. The transfer efficiencies among different PFASs were structure-dependent. Physiological factors (e.g., GFR and serum albumin) were observed for the first time to play critical roles in PFAS placental transfer.
  •  
3.
  • Wu, Chuansha, et al. (författare)
  • Associations of Early-Life Exposure to Submicron Particulate Matter With Childhood Asthma and Wheeze in China
  • 2022
  • Ingår i: JAMA Network Open. - : American Medical Association (AMA). - 2574-3805. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE Exposure to particulate matter (PM) has been associated with childhood asthma and wheeze. However, the specific associations between asthma and PM with an aerodynamic equivalent diameter of 1 mu m or less (ie, PM1), which is a contributor to PM2.5 and potentially more toxic than PM2.5, remain unclear. OBJECTIVE To investigate the association of early-life (prenatal and first year) exposure to size-segregated PM, including PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10, with childhood asthma and wheeze. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was based on a questionnaire administered between June 2019 and June 2020 to caregivers of children aged 3 to 6 years in 7 Chinese cities (Wuhan, Changsha, Taiyuan, Nanjing, Shanghai, Chongqing, and Urumqi) as the second phase of the China, Children, Homes, Health study. EXPOSURES Exposure to PM1, PM1-2.5, PM2.5, PM2.5-10, and PM10 during the prenatal period and first year of life. MAIN OUTCOMES AND MEASURES The main outcomes were caregiver-reported childhood asthma and wheeze. A machine learning-based space-time model was applied to estimate early-life PM1, PM2.5, and PM10 exposure at 1 x 1-km resolution. Concentrations of PM1-2.5 and PM2.5-10 were calculated by subtracting PM1 from PM2.5 and PM2.5 from PM10, respectively. Multilevel (city and child) logistic regression models were applied to assess associations. RESULTS Of 29 418 children whose caregivers completed the survey (15 320 boys [52.1%]; mean [SD] age, 4.9 [0.9] years), 2524 (8.6%) ever had wheeze and 1161 (3.9%) were diagnosed with asthma. Among all children, 18 514 (62.9%) were breastfed for more than 6 months and 787 (2.7%) had parental history of atopy. A total of 22 250 children (75.6%) had a mother with an educational level of university or above. Of the 25 422 children for whom information about cigarette smoking exposure was collected, 576 (2.3%) had a mother who was a current or former smoker during pregnancy and 7525 (29.7%) had passive household cigarette smoke exposure in early life. Early-life PM1, PM2.5, and PM10 exposure were significantly associated with increased risk of childhood asthma, with higher estimates per 10-mu g/m(3) increase in PM1 (OR, 1.55; 95% CI, 1.27-1.89) than in PM2.5 (OR, 1.14; 95% CI, 1.03-1.26) and PM10 (OR, 1.11; 95% CI, 1.02-1.20). No association was observed between asthma and PM1-2.5 exposure, suggesting that PM1 rather than PM1-2.5 contributed to the association between PM2.5 and childhood asthma. There were significant associations between childhood wheeze and early-life PM1 exposure (OR, 1.23; 95% CI, 1.07-1.41) and PM2.5 exposure (OR, 1.08; 95% CI, 1.01-1.16) per 10-mu g/m(3) increase in PM1 and PM2.5, respectively. CONCLUSIONS AND RELEVANCE In this cross-sectional study, higher estimates were observed for the association between PM with smaller particles, such as PM1, vs PM with larger particles and childhood asthma. The results suggest that the association between PM2.5 and childhood asthma was mainly attributable to PM1.
  •  
4.
  • Wu, Chuansha, et al. (författare)
  • Modification of Food Allergy on the Associations between Early Life Exposure to Size-Specific Particulate Matter and Childhood Allergic Rhinitis
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58:4, s. 1813-1822
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have reported the association between particulate matter (PM) and childhood allergic rhinitis (AR). However, it is unclear whether food allergy (FA) modifies the PM-AR association. We aimed at evaluating the effect of the modification of FA on PM-AR association in preschool children. We adopted a cross-sectional study and conducted a questionnaire survey among preschool children aged 3-6 years in 7 cities in China from June 2019 to June 2020 to collect information on AR and FA. We used a combination of multilevel logistic regression and restricted cubic spline functions to quantitatively assess whether FA modifies the associations between size-specific PM exposure (1 x 1 km) and the risk of AR. The adjusted odds ratios (ORs) for AR among the children with FA as per a 10 mu g/m(3) increase in early life PM1, PM2.5, and PM10 were significantly higher than the corresponding ORs among the children without FA [e.g., OR: 1.58, 95% CI: (1.32, 1.90) vs 1.29, 95% CI: (1.18, 1.41), per 10 mu g/m(3) increase in PM1]. The interactions between FA and size-specific PM exposure and their effects on AR were statistically significant (all p-int < 0.001). FA, as an important part of the allergic disease progression, may modify the PM-AR association in preschool children.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy