SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Youjia) "

Sökning: WFRF:(Wu Youjia)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, Youjia, et al. (författare)
  • Dark stars powered by self-interacting dark matter
  • 2022
  • Ingår i: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 106:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark matter annihilation might power the first luminous stars in the Universe. These types of stars, known as dark stars, could form in (10(6)-10(8)) M-? protohalos at redshifts z similar to 20, and they could be much more luminous and larger in size than ordinary stars powered by nuclear fusion. We investigate the formation of dark stars in the self-interacting dark matter (SIDM) scenario. We present a concrete particle physics model of SIDM that can simultaneously give rise to the observed dark matter density, satisfy constraints from astrophysical and terrestrial searches, and address the various small-scale problems of collisionless dark matter via the self-interactions. In this model, the power from dark matter annihilation is deposited in the baryonic gas in environments where dark stars could form. We further study the evolution of SIDM density profiles in the protohalos at z similar to 20. As the baryon cloud collapses due to the various cooling processes, the deepening gravitational potential can speed up gravothermal evolution of the SIDM halo, yielding sufficiently high dark matter densities for dark stars to form. We find that SIDM-powered dark stars can have similar properties, such as their luminosity and size, as dark stars predicted in collisionless dark matter models.
  •  
2.
  • Wu, Youjia, et al. (författare)
  • Uncertainties in direct dark matter detection in light of Gaia's escape velocity measurements
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :10
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct detection experiments have set increasingly stringent limits on the cross section for spin-independent dark matter-nucleon interactions. In obtaining such limits, experiments primarily assume the standard halo model (SHM) as the distribution of dark matter in our Milky Way. Three astrophysical parameters are required to define the SHM: the local dark matter escape velocity, the local dark matter density and the circular velocity of the sun around the center of the galaxy. This paper studies the effect of the uncertainties in these three astrophysical parameters on the XENON1T exclusion limits using the publicly available DDCalc code. We compare limits obtained using the widely assumed escape velocity from the RAVE survey and the newly calculated escape velocity by Monari et al. using Gaia data. Our study finds that the astrophysical uncertainties are dominated by the uncertainty in the escape velocity (independent of the best fit value) at dark matter masses below 6 GeV and can lead to a variation of nearly 6 orders of magnitude in the exclusion limits at 4 GeV. Above a WIMP mass of 6GeV, the uncertainty becomes dominated by the local dark matter density, leading to uncertainties of factors of similar to 10 (3) at 6 (15) GeV WIMP mass in the exclusion limits. Additionally, this work finds that the updated best fit value for the escape velocity based on Gaia data leads to only very minor changes to the effects of the astrophysical uncertainties on the XENON1T exclusion limits.
  •  
3.
  • Wu, Youjia, et al. (författare)
  • Using action space clustering to constrain the recent accretion history of Milky Way-like galaxies
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:4, s. 5882-5901
  • Tidskriftsartikel (refereegranskat)abstract
    • In the currently favoured cosmological paradigm galaxies form hierarchically through the accretion of satellites. Since a satellite is less massive than the host, its stars occupy a smaller volume in action space. Actions are conserved when the potential of the host halo changes adiabatically, so stars from an accreted satellite would remain clustered in action space as the host evolves. In this paper, we identify recently disrupted accreted satellites in three Milky Way-like disc galaxies from the cosmological baryonic FIRE-2 simulations by tracking satellites through simulation snapshots. We try to recover these satellites by applying the cluster analysis algorithm Enlink to the orbital actions of accreted star particles in the z = 0 snapshot. Even with completely error-free mock data we find that only 35 per cent (14/39) satellites are well recovered while the rest (25/39) are poorly recovered (i.e. either contaminated or split up). Most (10/14 similar to 70 per cent) of the well-recovered satellites have infall times <7.1 Gyr ago and total mass >4 x10(8) M-circle dot (stellar mass more than 1.2 x10(6) M-circle dot, although our upper mass limit is likely to be resolution dependent). Since cosmological simulations predict that stellar haloes include a population of in situ stars, we test our ability to recover satellites when the data include 10-50 per cent in situ contamination. We find that most previously well-recovered satellites stay well recovered even with 50 per cent contamination. With the wealth of 6D phase space data becoming available we expect that cluster analysis in action space will be useful in identifying the majority of recently accreted and moderately massive satellites in the Milky Way.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy