SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Zhigang 1977 ) "

Sökning: WFRF:(Wu Zhigang 1977 )

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Bei, et al. (författare)
  • High-Performance Liquid Alloy Patterning of Epidermal Strain Sensors for Local Fine Skin Movement Monitoring
  • 2019
  • Ingår i: SOFT ROBOTICS. - : MARY ANN LIEBERT, INC. - 2169-5172 .- 2169-5180. ; 6:3, s. 414-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, stretchable/epidermal electronics based on liquid alloys has attracted more and more attention, and various processing techniques have subsequently been developed to demonstrate diverse applications never seen before. However, to fully exploit its potential advantages, epidermal electronics is still searching for a technique meeting all demands on resolution, pattern complexity, and operational flexibility. In this study, we propose a technique that allows for complex and high-density patterns on thin stretchable substrates by combining ultraviolet laser patterning of a modified water-soluble mask, atomized spray deposition of liquid alloys on a flexible temporary substrate, lift-off by water dissolving, and finally, component integration and encapsulation. With this new technique, it was possible to make epidermal precision strain sensors with liquid alloy patterns of high density, which were capable of monitoring fine local skin movements such as the detailed process of wrinkle formation as well as the overall motion of the body part. In addition, this process is highly efficient and well controllable, with high potential for possible industrial automation and massive production.
  •  
2.
  • Wu, Zhigang, 1977-, et al. (författare)
  • Seamless modulus gradient structures for highly resilient, stretchable system integration
  • 2018
  • Ingår i: Materials Today Physics. - : Elsevier. - 2542-5293. ; 4, s. 28-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid system integration of rigid components into stretchable systems is often necessary when targeting for valuable functions in various scenarios. Among them, (Young's) modulus gradient structures for system integration demonstrate excellent mechanical performance when stretched. However, the mechanical reliability is still limited under large deformation due to the inherent interface between materials of different modulus. Here, a seamless transition between heterogeneous moduli parts made with polydimethylsiloxane (PDMS)-based elastomers is presented for stretchable system integration by simply tuning their modulus via introducing a small amount of an additive into some parts of the substrate. These gradient structures not only provide a high stretchability (similar to 250%) for the overall system, but also improve the resilience of the system (can be stretched up to 50,000 cycles from 0 to 150% global strain) at the same time. The seamless modulus gradient structures provide a simple and effective way of allowing highly resilient and stretchable system integration for various soft intelligent systems.
  •  
3.
  • Zhang, Shuo, et al. (författare)
  • High-Fidelity Conformal Printing of 3D Liquid Alloy Circuits for Soft Electronics
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:7, s. 7148-7156
  • Tidskriftsartikel (refereegranskat)abstract
    • Owing to the great deformability from fluid, liquid alloy-based soft electronics has inherent advantages over rigid-based ones for applications such as stretchable intelligence or soft robotics, where high fidelity of three-dimensional (3D) conformability or dynamic morphology is required. However, current fabrications heavily rely on planar techniques, which severely limit their great potential in such attracting applications. By tuning the wettability of liquid alloy on a soft substrate through a selective surface morphology modification, we present a flexography printing technique of liquid alloy circuits on both planar (from diverse materials) and 3D complex surfaces and investigate the tuning mechanism and the relation between liquid alloy wettability and surface morphology modification. In a demonstration, high-fidelity printing of liquid alloy circuits can be deployed not only on the outline but also on small pits of strawberry surface, and the circuits work well in a dynamic deformation. Furthermore, being compatible with current industry process, our technique can be highly potential for future mass manufacturing of liquid alloy-based soft electronics.
  •  
4.
  • An, Hongbin, et al. (författare)
  • A method of manufacturing microfluidic contact lenses by using irreversible bonding and thermoforming
  • 2018
  • Ingår i: Journal of Micromechanics and Microengineering. - : IOP PUBLISHING LTD. - 0960-1317 .- 1361-6439. ; 28:10
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present the development of microfluidic contact lenses, which is based on the advantages of wearable microfluidics and can have great potential in the ophthalmology healthcare field. The development consists of two parts; the manufacturing process and the usability tests of the devices. In the manufacturing process, we firstly extended silane coupling and surface modification to irreversibly bond plastic membranes with microchannel-molded silicone rubber, to form the plastic-PDMS plane assemblies, and then molded the plane into a contact lens by thermoforming. We systematically investigated the effects of thermoforming factors, heating temperatures and the terrace die's sphere radius on channels by using the factorial experiment design. In addition, various tests were conducted to verify the usability of the devices. Through blockage and leakage tests, the devices were proved to be feasible, with no channel-blockages and could stand high pressures. Through a wearing test, the contact lenses were confirmed to be harmless on the living body. Furthermore, by performing the manipulating test, the device was proved to be liquid-controllable. These works provide a foundation for the applications of microfluidic contact lenses in ophthalmology.
  •  
5.
  • An, Hongbin, et al. (författare)
  • Microfluidic contact lenses for unpowered, continuous and non-invasive intraocular pressure monitoring
  • 2019
  • Ingår i: Sensors and Actuators A-Physical. - : Elsevier BV. - 0924-4247 .- 1873-3069. ; 295, s. 177-187
  • Tidskriftsartikel (refereegranskat)abstract
    • Intraocular pressure (IOP) is a crucial physiological indicator of the visual system and play a key role in the diagnosis and treatment of glaucoma. However, the current handheld single measurement tools for IOP sensing cannot meet the future demands for glaucoma management. Thus, here we present the microfluidic contact lens sensors that could provide unpowered, continuous and non-invasive IOP monitoring. The microfluidic contact lens is comprised of a sensing layer of the micropatterned soft-elastomer and a hard plastic reference layer. The devices use the annular sensing chamber filled with the dyed liquid and a sensing microchannel as the IOP transducer. Resulting from the volume variance of the sensing chamber and caused by the deformation of the sensing layer under pressure, the IOP signal is detected as the displacement change of the dyed liquid's interface in the sensing channel, and in which, the displacement change can be optically observed by using the smart-phone camera. Based on the silicone rubber model eyeball, the sensing mechanism of the devices with different design parameters (the position of the sensing chambers and the dimension of the sensing channels) are explored by using the theoretical analyses and experimental investigations. The characteristics of these microfluidic contact lens sensors are tested, in which, the maximum sensitivity of the device (with the sensing chamber of 8.5 mm in diameter and the sensing channel of 100 x 40 um in size) can be achieved to 0.708 mm/mmHg in a working range of 0 (4) over tilde0 mmHg. Also, cyclical tests were conducted and indicated that the devices had a good reversibility and Long-term stability. Furthermore, the device (with the sensing chamber of 5.0 mm in diameter and the sensing channel of 150 x 40 urn in size) was test on the porcine eyes ex vivo, showing a sensitivity of 0.2832 mm/mmHg in a range of 8 (3) over tilde2 mmHg and, the device had a good reproducibility to its IOP change. This work provides a promising approach for unpowered, continuous and non-invasive monitoring of IOP.
  •  
6.
  • Cruz, Javier, 1990-, et al. (författare)
  • High pressure inertial focusing for separating and concentrating bacteria at high throughput
  • 2017
  • Ingår i: Journal of Micromechanics and Microengineering. - : IOP PUBLISHING LTD. - 0960-1317 .- 1361-6439. ; 27:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 mu m particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 mu m spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 mu l min(-1). The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.
  •  
7.
  • Cruz, Javier, 1990-, et al. (författare)
  • Inertial focusing of microparticles and its limitations
  • 2016
  • Ingår i: 27Th Micromechanics And Microsystems Europe Workshop (Mme 2016). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Microfluidic devices are useful tools for healthcare, biological and chemical analysis and materials synthesis amongst fields that can benefit from the unique physics of these systems. In this paper we studied inertial focusing as a tool for hydrodynamic sorting of particles by size. Theory and experimental results are provided as a background for a discussion on how to extend the technology to submicron particles. Different geometries and dimensions of microchannels were designed and simulation data was compared to the experimental results.
  •  
8.
  • Deng, Pan, et al. (författare)
  • High purity and viability cell separation of a bacterivorous jakobid flagellate based on a steep velocity gradient induced soft inertial force
  • 2018
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 8:62, s. 35512-35520
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell separation is one of the key limiting factors for precise analysis of non-axenic microbial lab cultures or environmental samples, and it remains a challenge to isolate target cells with high purity and viability via high-throughput cell sorting. During the past decade, hydrodynamic microfluidic platforms have attracted great attention in cell preparation for their high efficiency, robust performance and low cost. Here, we employ the use of a low-velocity sheath flow with high viscosity near the wall and a high-velocity sheath flow with low viscosity on the other side of the sample flow in a soft inertial separation chip. This not only prevents hard interactions between cells and chip walls but, in comparison to previous inertial separation methods, generates a significant increase in deflection of large cells while keeping the small ones in the original flow. We first conducted experiments on a mixture of small and large fluorescent particles (1.0 and 9.9 m, respectively) and removed over 99% of the small particles. The separation efficiency was then tested on a culture of a bacterivorous jakobid flagellate, Seculamonas ecuadoriensis fed on the live bacterium, Klebsiella sp. Using our microfluidic chip, over 94% of live bacteria were removed while maintaining high jakobid cell viability. For comparison, we also conducted size-based cell sorting of the same culture using flow cytometry, which is widely used as a rapid and automated separation tool. Compared with the latter, our chip showed more than 40% higher separation efficiency. Thus, our device provides high purity and viability for cell separation of a sensitive cell sample (jakobid cells). Potentially, the method can be further used for applications in diagnostics, biological analyses and environmental assessment of mixed microbial samples.
  •  
9.
  • Jeong, Seung Hee, 1978-, et al. (författare)
  • Stretchable Thermoelectric Generators Metallized with Liquid Alloy
  • 2017
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 9:18, s. 15791-15797
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional thermoelectric generators (TEGs) are normally hard, rigid, and flat. However, most objects have curvy surfaces, which require soft and even stretchable TEGs for maximizing efficiency of thermal energy harvesting. Here, soft and stretchable TEGs using conventional rigid Bi2Te3 pellets metallized with a liquid alloy is reported. The fabrication is implemented by means of a tailored layer-by-layer fabrication process. The STEGs exhibit an output power density of 40.6 ?W/cm2 at room temperature. The STEGs are operational after being mechanically stretched-and-released more than 1000 times, thanks to the compliant contact between the liquid alloy interconnects and the rigid pellets. The demonstrated interconnect scheme will provide a new route to the development of soft and stretchable energy-harvesting avenues for a variety of emerging electronic applications.
  •  
10.
  • Perez, Mauricio D., et al. (författare)
  • Head-compliant microstrip split ring resonator for non-invasive healing monitoring after craniosynostosis-based surgery
  • 2020
  • Ingår i: HEALTHCARE TECHNOLOGY LETTERS. - : INST ENGINEERING TECHNOLOGY-IET. - 2053-3713. ; 7:1, s. 29-34
  • Tidskriftsartikel (refereegranskat)abstract
    • A soft and highly directive, proximity-coupled split-ring resonator fabricated with a liquid alloy, copper and polydimethylsiloxane (PDMS) is presented. The same was designed for sensing osteogenesis of calvarial bone. As dielectric properties of bone grafts in ossifying calvarial defects should change during the osteogenesis process, devices like this could monitor the gradual transformation of the defect into bone by differentiating changes in the dielectric properties as shifts in the resonance frequency. Computational Software Technology (CST) Microwave Studio (R)-based simulation results on computational head models were in good agreement with laboratory results on head phantom models, which also included the comparison with an in-vivo measurement on the human head. A discussion based on an inductive reasoning regarding dynamics' considerations is provided as well. Since the skin elasticity of newborn children is high, stretching and crumpling could be significant. In addition, due to typical head curvatures in newborn children, bending should not be a significant issue, and can provide higher energy focus in the defect area and improve conformability. The present concept could support the development of soft, cheap and portable follow-up monitoring systems to use in outpatient hospital and home care settings for post-operative monitoring of bone healing after reconstructive surgical procedures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy