SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wutz Anton) "

Sökning: WFRF:(Wutz Anton)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tedeschi, Antonio, et al. (författare)
  • Wapl is an essential regulator of chromatin structure and chromosome segregation
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 501:7468, s. 564-568
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian genomes contain several billion base pairs of DNA that are packaged in chromatin fibres. At selected gene loci, cohesin complexes have been proposed to arrange these fibres into higher-order structures, but how important this function is for determining overall chromosome architecture and how the process is regulated are not well understood. Using conditional mutagenesis in the mouse, here we show that depletion of the cohesin-associated protein Wapl stably locks cohesin on DNA, leads to clustering of cohesin in axial structures, and causes chromatin condensation in interphase chromosomes. These findings reveal that the stability of cohesin-DNA interactions is an important determinant of chromatin structure, and indicate that cohesin has an architectural role in interphase chromosome territories. Furthermore, we show that regulation of cohesin-DNA interactions by Wapl is important for embryonic development, expression of genes such as c-myc (also known as Myc), and cell cycle progression. In mitosis, Wapl-mediated release of cohesin from DNA is essential for proper chromosome segregation and protects cohesin from cleavage by the protease separase, thus enabling mitotic exit in the presence of functional cohesin complexes.
  •  
2.
  • Dou, Diana R., et al. (författare)
  • Xist ribonucleoproteins promote female sex-biased autoimmunity
  • 2024
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 187:3, s. 16-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.
  •  
3.
  • Magnusson, Mattias, et al. (författare)
  • HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 109:9, s. 3687-3696
  • Tidskriftsartikel (refereegranskat)abstract
    • The Homeobox (Hox) transcription factors are important regulators of normal and malignant hematopoiesis because they control proliferation, differentiation, and self-renewal of hematopoietic cells at different levels of the hematopoietic hierarchy. In transgenic mice we show that the expression of HOXA10 is tightly regulated by doxycycline. Intermediate concentrations of HOXA10 induced a 15-fold increase in the repopulating capacity of hematopoietic stem cells (HSCs) after 13 days of in vitro culture. Notably, the proliferation induction of HSC by HOXA10 was dependent on the HOXA10 concentration, because high levels of HOXA10 had no effect on HSC proliferation. Furthermore, high levels of HOXA10 blocked erythroid and megakaryocyte development, demonstrating that tight regulation of HOXA10 is critical for normal development of the erythroid and megakaryocytic lineages. The HOXA10-mediated effects on hematopoietic cells were associated with altered expression of genes that govern stem-cell self-renewal and lineage commitment (eg, hepatic leukemia factor [HlF], Dickkopf-1 [Dkk-1], growth factor independent-1 [Gfi-1], and Gata-1). Interestingly, binding sites for HOXA10 were found in HLF, Dkk-1, and Gata-1, and Dkk-1 and Gfi-1 were transcriptionally activated by HOXA10. These findings reveal novel molecular pathways that act downstream of HOXA10 and identify HOXA10 as a master regulator of postnatal hematopoietic development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy