SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wygant J.) "

Sökning: WFRF:(Wygant J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bale, S. D., et al. (författare)
  • The FIELDS Instrument Suite for Solar Probe Plus
  • 2016
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 204:1-4, s. 49-82
  • Forskningsöversikt (refereegranskat)abstract
    • NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.
  •  
2.
  • Matsui, H., et al. (författare)
  • A Multi-Instrument Study of a Dipolarization Event in the Inner Magnetosphere
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on September 22, 2018. The spacecraft were located in the inner magnetosphere at L similar to 6-7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was similar to 1R(E). Gradual dipolarization or an increase of the northward component B-Z of the background field occurred on a timescale of minutes. Exploration of energization and Radiation in Geospace located 0.5 MLT eastward at a similar L shell also measured a gradual increase. The spatial scale was of the order of 1 R-E. On top of that, MMS and Probe B measured B-Z increases, and a decrease in one case, on a timescale of seconds, accompanied by large electric fields with amplitudes > several tens of mV/m. Spatial scale lengths were of the order of the ion inertial length and the ion gyroradius. The inertial term in the momentum equation and the Hall term in the generalized Ohm's law were sometimes non-negligible. These small-scale variations are discussed in terms of the ballooning/interchange instability and kinetic Alfven waves among others. It is inferred that physics of multiple scales was involved in the dynamics of this dipolarization event.
  •  
3.
  • Cattell, C., et al. (författare)
  • Dayside response of the magnetosphere to a small shock compression : Van Allen Probes, Magnetospheric MultiScale, and GOES-13
  • 2017
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 44:17, s. 8712-8720
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations from Magnetospheric MultiScale (similar to 8 Re) and Van Allen Probes (similar to 5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by Magnetospheric MultiScale (MMS), with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF waves also were seen. These observations demonstrate that even very weak shocks can have significant impact on the radiation belts. Plain Language Summary Very fast moving clouds of charged particles are ejected from the Sun when it is active. Shock waves often develop at the cloud front as it plows through the solar wind. When the shock hits the Earth's magnetic field, it can push the Earth's magnetic shield inside the distance where many communication and weather satellites orbit. The energy associated with the shock can also very rapidly increase the energy of electrons trapped in the Earth's magnetic field in the Van Allen Radiation belts. These electrons can damage satellites. We have used four satellites arrayed at different locations on the dayside of the Earth's magnetic field to show, for the first time, that small shocks have a different effect than the large shocks that are usually studied but that even small shocks can produce relativistic electrons.
  •  
4.
  • Li, J., et al. (författare)
  • Zipper-like" periodic magnetosonic waves : Van Allen Probes, THEMIS, and magnetospheric multiscale observations
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:2, s. 1600-1610
  • Tidskriftsartikel (refereegranskat)abstract
    • An interesting form of "zipper-like" magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisatellite observations shows that zipper-like magnetosonic waves mainly occur on the dawnside to noonside, in a frequency range between 10 f(cp) and f(LHR). The zipper-like magnetosonic waves may provide a new clue to nonlinear excitation or modulation process, while its cause still remains to be fully understood.
  •  
5.
  • Gustafsson, G, et al. (författare)
  • The electric field and wave experiment for the Cluster mission
  • 1997
  • Ingår i: Space Science Reviews. - 0038-6308 .- 1572-9672. ; 79, s. 137-156
  • Tidskriftsartikel (refereegranskat)abstract
    • The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36 000 samples s(-1). Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (1) measurements of quasi-static electric fields of amplitudes lip to 700 mV m(-1) with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large- and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.
  •  
6.
  • Harvey, P, et al. (författare)
  • The electric field instrument on the Polar satellite
  • 1995
  • Ingår i: Space Science Reviews. - 0038-6308 .- 1572-9672. ; 71, s. 583-596
  • Tidskriftsartikel (refereegranskat)abstract
    • The Polar satellite carries a system of four wire booms in the spacecraft spin plane and two rigid booms along the spin axis. Each of the booms has a spherical sensor at its tip along with nearby guard and stub surfaces whose potentials relative to that of their sphere are controlled by associated electronics. The potential differences between opposite sphere pairs are measured to yield the three components of the DC to >1 MHz electric field. Spheres can also be operated in a mode in which their collected current is measured to give information on the plasma density and its fluctuations. The scientific studies to be performed by this experiment as well as the mechanical and electrical properties of the detector system are described.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy