SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xia Yidong) "

Sökning: WFRF:(Xia Yidong)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, Yuntao, et al. (författare)
  • Silicon promotes biomass accumulation in Phragmites australis under waterlogged conditions in coastal wetland
  • 2024
  • Ingår i: Plant and Soil. - : Springer Nature. - 0032-079X .- 1573-5036.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Previous studies have shown that silicon (Si) can affect plant growth and yield by regulating the availability of other nutrients. However, the mechanisms by which Si affects plant biomass accumulation in coastal wetlands are not well explored. Methods We conducted a sampling campaign across the whole growing season of Phragmites australis under waterlogging and drought conditions in coastal wetland, and quantified the effects of Si availability on biomass accumulation. Results Compared with drought condition, the waterlogged condition improved the utilization efficiency of nitrogen (N) and phosphorus (P) of P. australis regulated by higher Si contents. Meanwhile, the increased Si contents promoted the utilization of N and P in leaf, suggesting that the increase in Si contents optimizes the photosynthetic process. Lignin contents in P. australis decreased with the increasing Si contents, which confirmed that Si can replace structural carbon components. In addition, principal component analysis (PCA) showed aboveground biomass accumulation of P. australis was synchronized with Si accumulation, indicating that Si was a beneficial element to promote biomass accumulation. Conclusions Our study implies that increasing Si availability is conducive to biomass accumulation of P. australis in waterlogged wetlands, which will provide important scientific references for the management of coastal wetland ecosystem and the increase of global 'blue carbon' sequestration.
  •  
2.
  • Li, Qiang, et al. (författare)
  • Microbial Necromass, Lignin, and Glycoproteins for Determining and Optimizing Blue Carbon Formation
  • 2024
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58, s. 468-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands contribute to the mitigation of climate change through the sequestration of “blue carbon”. Microbial necromass, lignin, and glycoproteins (i.e., glomalin-related soil proteins (GRSP)), as important components of soil organic carbon (SOC), are sensitive to environmental change. However, their contributions to blue carbon formation and the underlying factors remain largely unresolved. To address this paucity of knowledge, we investigated their contributions to blue carbon formation along a salinity gradient in coastal marshes. Our results revealed decreasing contributions of microbial necromass and lignin to blue carbon as the salinity increased, while GRSP showed an opposite trend. Using random forest models, we showed that their contributions to SOC were dependent on microbial biomass and resource stoichiometry. In N-limited saline soils, contributions of microbial necromass to SOC decreased due to increased N-acquisition enzyme activity. Decreases in lignin contributions were linked to reduced mineral protection offered by short-range-ordered Fe (FeSRO). Partial least-squares path modeling (PLS-PM) further indicated that GRSP could increase microbial necromass and lignin formation by enhancing mineral protection. Our findings have implications for improving the accumulation of refractory and mineral-bound organic matter in coastal wetlands, considering the current scenario of heightened nutrient discharge and sea-level rise.
  •  
3.
  • Shi, Lei, et al. (författare)
  • An investigation into ultra-thin pseudobinary oxide (TiO2)(x)(Al2O3)(1-x) films as high-k gate dielectrics
  • 2008
  • Ingår i: Applied Physics A. - : Springer Verlag (Germany). - 0947-8396 .- 1432-0630. ; 90:2, s. 379-384
  • Tidskriftsartikel (refereegranskat)abstract
    • As potential gate dielectric materials, pseudobinary oxide (TiO2)(x)(Al2O3)(1-x) (0.1 less than= x less than= 0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 degrees C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)(0.4)(Al2O3)(0.6) film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications.
  •  
4.
  • Wu, Lele, et al. (författare)
  • Organic matter composition and stability in estuarine wetlands depending on soil salinity
  • 2024
  • Ingår i: Science of the Total Environment. - 0048-9697 .- 1879-1026. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral-associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM (> 70 %) and increased with salinity (70 %–76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 %–81 %) and N (52 %–82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 %–64 %) and N pool (8.6 %–59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
  •  
5.
  • Wu, Yuntao, et al. (författare)
  • Climatic controls on stable carbon and nitrogen isotope compositions of temperate grasslands in northern China
  • 2023
  • Ingår i: Plant and Soil. - : Springer. - 0032-079X .- 1573-5036. ; 491, s. 133-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The natural abundances of stable carbon (C) and nitrogen (N) isotopes (delta C-13 and delta N-15) are extensively used to indicate the C and N biogeochemical cycles at large spatial scales. However, the spatial patterns of delta C-13 and delta N-15 in plant-soil systems of grasslands in northern China and their main driving factors across regional climatic gradient are still not well understood. Methods We measured plant and soil delta C-13 and delta N-15 compositions as well as their associated environmental factors across 2000 km climatic gradient (-0.2 to 9 degrees C; 152 to 502 mm) in grasslands of northern China. Results The soil delta C-13 and delta N-15 values in surface were lower than those in bottom for temperate typical steppe but had no significant differences for temperate meadow steppe and temperate desert steppe. Soil delta C-13 values declined with increasing soil organic carbon (SOC) but increased as mean annual temperature (MAT). These changes were attributed to the microbial decomposition rate. The delta N-15 values in soil and plant were negatively correlated with MAT and mean annual precipitation (MAP), which were mainly related to the low soil organic matter mineralization rate and the shift of dominant species from C-4 to C-3. Conclusions Our results indicate the spatial patterns and different influencing factors on delta C-13 and delta N-15 values along the climatic gradient in grasslands of northern China. The findings will provide scientific references for future research on the C and N biogeochemical cycles of temperate grasslands.
  •  
6.
  • Xia, Shaopan, et al. (författare)
  • Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:2, s. 417-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite increasing recognition of the critical role of coastal wetlands in mitigating climate change, sea‐level rise, and salinity increase, soil organic carbon (SOC) sequestration mechanisms in estuarine wetlands remain poorly understood. Here, we present new results on the source, decomposition, and storage of SOC in estuarine wetlands with four vegetation types, including single Phragmites australis (P, habitat I), a mixture of P. australis and Suaeda salsa (P + S, habitat II), single S. salsa (S, habitat III), and tidal flat (TF, habitat IV) across a salinity gradient. Values of δ13C increased with depth in aerobic soil layers (0–40 cm) but slightly decreased in anaerobic soil layers (40–100 cm). The δ15N was significantly enriched in soil organic matter at all depths than in the living plant tissues, indicating a preferential decomposition of 14N‐enriched organic components. Thus, the kinetic isotope fractionation during microbial degradation and the preferential substrate utilization are the dominant mechanisms in regulating isotopic compositions in aerobic and anaerobic conditions, respectively. Stable isotopic (δ13C and δ15N), elemental (C and N), and lignin composition (inherited (Ad/Al)s and C/V) were not completely consistent in reflecting the differences in SOC decomposition or accumulation among four vegetation types, possibly due to differences in litter inputs, root distributions, substrate quality, water‐table level, salinity, and microbial community composition/activity. Organic C contents and storage decreased from upstream to downstream, likely due to primarily changes in autochthonous sources (e.g., decreased onsite plant biomass input) and allochthonous materials (e.g., decreased fluvially transported upland river inputs, and increased tidally induced marine algae and phytoplankton). Our results revealed that multiple indicators are essential to unravel the degree of SOC decomposition and accumulation, and a combination of C:N ratios, δ13C, δ15N, and lignin biomarker provides a robust approach to decipher the decomposition and source of sedimentary organic matter along the river‐estuary‐ocean continuum.
  •  
7.
  • Xia, Shaopan, et al. (författare)
  • Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:20, s. 6065-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha(-1), with higher values in mid-latitude regions (25-30 degrees N) compared with those in both low- (20 degrees N) and high-latitude (38-40 degrees N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha(-1) following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha(-1) following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 x 10(6) Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy