SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xia Yihan 1990) "

Sökning: WFRF:(Xia Yihan 1990)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ding, Bao Jian, et al. (författare)
  • Biosynthesis of the sex pheromone component (E,Z)-7,9-Dodecadienyl acetate in the European Grapevine Moth, Lobesia botrana, involving ∆11 desaturation and an elusive ∆7 desaturase
  • 2021
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 0098-0331 .- 1573-1561. ; 47:3, s. 248-264
  • Tidskriftsartikel (refereegranskat)abstract
    • The European grapevine moth, Lobesia botrana, uses (E,Z)-7,9-dodecadienyl acetate as its major sex pheromone component. Through in vivo labeling experiments we demonstrated that the doubly unsaturated pheromone component is produced by ∆11 desaturation of tetradecanoic acid, followed by chain shortening of (Z)-11-tetradecenoic acid to (Z)-9-dodecenoic acid, and subsequently introduction of the second double bond by an unknown ∆7 desaturase, before final reduction and acetylation. By sequencing and analyzing the transcriptome of female pheromone glands of L. botrana, we obtained 41 candidate genes that may be involved in sex pheromone production, including the genes encoding 17 fatty acyl desaturases, 13 fatty acyl reductases, 1 fatty acid synthase, 3 acyl-CoA oxidases, 1 acetyl-CoA carboxylase, 4 fatty acid transport proteins and 2 acyl-CoA binding proteins. A functional assay of desaturase and acyl-CoA oxidase gene candidates in yeast and insect cell (Sf9) heterologous expression systems revealed that Lbo_PPTQ encodes a ∆11 desaturase producing (Z)-11-tetradecenoic acid from tetradecanoic acid. Further, Lbo_31670 and Lbo_49602 encode two acyl-CoA oxidases that may produce (Z)-9-dodecenoic acid by chain shortening (Z)-11-tetradecenoic acid. The gene encoding the enzyme introducing the E7 double bond into (Z)-9-dodecenoic acid remains elusive even though we assayed 17 candidate desaturases in the two heterologous systems.
  •  
2.
  • Xia, Yihan, 1990, et al. (författare)
  • Green Chemistry Production of Codlemone, the Sex Pheromone of the Codling Moth (Cydia pomonella), by Metabolic Engineering of the Oilseed Crop Camelina (Camelina sativa)
  • 2021
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 1573-1561 .- 0098-0331. ; 47:12, s. 950-967
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.
  •  
3.
  • Xia, Yi Han, et al. (författare)
  • Multi-Functional Desaturases in Two Spodoptera Moths with ∆11 and ∆12 Desaturation Activities
  • 2019
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 0098-0331 .- 1573-1561. ; 45:4, s. 378-387
  • Tidskriftsartikel (refereegranskat)abstract
    • The beet armyworm, Spodoptera exigua, uses (Z,E)-9,12-tetradecadienyl acetate as the major component of its sex pheromone. Previous isotope-labeling experiments demonstrated an unusual ∆12 desaturase activity involved in the biosynthesis of this compound; however, the putative ∆12 desaturase gene has not been reported to date. In the present study, we confirmed this ∆12 desaturation pathway by in vivo labeling experiments, and characterized candidate desaturase genes in a yeast heterologous expression system. We demonstrated that a pheromone gland-specific desaturase, SexiDes5, uses palmitic acid and the subsequently chain-shortened product (Z)-9-tetradecenoic acid as substrates to produce (Z)-11-hexadecenoic and (Z,E)-9,12-tetradecadienoic acids, respectively. In addition, the homologous desaturase SlitDes5 from the congeneric Spodoptera litura had analogous functions.
  •  
4.
  • Xia, Yihan, 1990, et al. (författare)
  • Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes
  • 2022
  • Ingår i: BMC Biology. - : Springer Science and Business Media LLC. - 1741-7007. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. Results: In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. Conclusions: Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
  •  
5.
  • Löfstedt, Christer, et al. (författare)
  • METHODS OF PRODUCING INSECT PHEROMONES
  • 2021
  • Patent (övrigt vetenskapligt/konstnärligt)abstract
    • The present disclosure relates to methods of producing insect pheromone precursors and genetically modified plants capable of producing insect pheromone precursors. The genetically modified plants include a heterologous gene encoding at least one silencing suppressor protein and at least one enzyme selected from the group consisting of a fatty acyl desaturase, a fatty acyl elongase, a fatty acyl reductase, and an acyl-CoA oxidase.
  •  
6.
  • Xia, Yihan, 1990, et al. (författare)
  • Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemoreception role of moth ovipositor has long been suggested, but its molecular mechanism is mostly unknown. By transcriptomic analysis of the female ovipositor-pheromone glands (OV-PG) of Chilo suppressalis, we obtained 31 putative chemoreception genes (9 OBPs, 10 CSPs, 2 ORs, 1 SNMP, 8 CXEs and 1 AOX), in addition to 32 genes related to sex pheromone biosynthesis (1 FAS, 6 Dess, 10 FARs, 2 ACOs, 1 ACC, 4 FATPs, 3 ACBPs and 5 ELOs). Tissue expression profiles further revealed that CsupCSP2 and CsupCSP10 were OV-PG biased, while most chemoreception genes were highly and preferably expressed in antennae. This suggests that OV-PG employs mostly the same chemoreception proteins as in antennae, although the physiological roles of these proteins might be different in OV-PG. Of the 32 pheromone biosynthesis related genes, CsupDes4, CsupDes5 and CsupFAR2 are strongly OV-PG biased, and clustered with functionally validated genes from other moths, strongly indicating their involvement in specific step of the pheromone biosynthesis. Our study for the first time identified a large number of putative chemoreception genes, and provided an important basis for exploring the chemoreception mechanisms of OV-PG in C. suppressalis, as well as other moth species.
  •  
7.
  • Xia, Yihan, 1990, et al. (författare)
  • Production of Moth Sex Pheromone Precursors in Nicotiana spp. by Agrobacterium-mediated Stable Transformation.
  • 2020
  • Ingår i: Journal of Pest Science. - : Springer Science and Business Media LLC. - 1612-4758 .- 1612-4766. ; 93:4, s. 1333-1346
  • Tidskriftsartikel (refereegranskat)abstract
    • Pheromones are environmentally friendly alternatives to traditional pesticides for pest control. They are widely applied for insect monitoring, mating disruption and mass trapping. Nicotiana benthamiana and N. tabacum are potential green biomass production platforms of moth sex pheromones. Using these two Nicotiana species as plant factories, we expressed biosynthetic genes of plant and insect origin in leaf tissue. Moth sex pheromone precursors (E)-11-tetradecenoic acid, (Z)-11-tetradecenoic acid and (Z)-11-hexadecenoic acid were produced by introducing the acyl-ACP thioesterases CpuFatB1 from Cuphea pulcherrima or CpaFatB2 from C. palustris and the fatty acyl desaturases Ave∆11 from Argyrotaenia velutinana, CpaE11 from Choristoneura parallela or Atr∆11 from Amyelois transitella, under the control of CaMV-35S promoter. Among the Nicotiana spp. transformants, the best line produced (Z)-11-hexadecenoic acid at 17.6% of total fatty acids in leaves, during flowering stage, corresponding to 335 µg of (Z)-11-hexadecenoic acid per gram of fresh leaf. The (Z)-11-hexadecenoic acid production lines from N. benthamiana were selected for further propagation to obtain homozygous lines. In the N. benthamiana T2 generation, the production quantity of (Z)-11-hexadecenoic acid was stable. Our study demonstrates the feasibility of stable transformation of N. benthamiana for production of moth pheromone precursors in vegetative tissue.
  •  
8.
  • Zhang, YANAN, et al. (författare)
  • Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker)
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information.Methodology/Principal Findings:We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads.Conclusion:Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.
  •  
9.
  • Zhang, YANAN, et al. (författare)
  • Putative Pathway of Sex Pheromone Biosynthesis and Degradation by Expression Patterns of Genes Identified from Female Pheromone Gland and Adult Antenna of Sesamia inferens (Walker).
  • 2014
  • Ingår i: Journal of Chemical Ecology. - : Springer Science and Business Media LLC. - 1573-1561 .- 0098-0331. ; 40:5, s. 439-451
  • Tidskriftsartikel (refereegranskat)abstract
    • The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy