SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xiao YY) "

Sökning: WFRF:(Xiao YY)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
6.
  •  
7.
  • Feng, HL, et al. (författare)
  • Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study
  • 2023
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 14:1, s. 930-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing interest in the role of timing of daily behaviors in improving health. However, little is known about the optimal timing of physical activity to maximize health benefits. We perform a cohort study of 92,139 UK Biobank participants with valid accelerometer data and all-cause and cause-specific mortality outcomes, comprising over 7 years of median follow-up (638,825 person-years). Moderate-to-vigorous intensity physical activity (MVPA) at any time of day is associated with lower risks for all-cause, cardiovascular disease, and cancer mortality. In addition, compared with morning group (>50% of daily MVPA during 05:00-11:00), midday-afternoon (11:00-17:00) and mixed MVPA timing groups, but not evening group (17:00-24:00), have lower risks of all-cause and cardiovascular disease mortality. These protective associations are more pronounced among the elderly, males, less physically active participants, or those with preexisting cardiovascular diseases. Here, we show that MVPA timing may have the potential to improve public health.
  •  
8.
  • Huang, YX, et al. (författare)
  • An Update on the Immunotherapy for Oropharyngeal Squamous Cell Carcinoma
  • 2022
  • Ingår i: Frontiers in oncology. - : Frontiers Media SA. - 2234-943X. ; 12, s. 800315-
  • Tidskriftsartikel (refereegranskat)abstract
    • Oropharyngeal squamous cell carcinoma (OPSCC) is an uncommon malignancy worldwide. Remarkably, the rising incidence of OPSCC has been observed in many developed countries over the past few decades. On top of tobacco smoking and alcohol consumption, human papillomavirus (HPV) infection has become a major etiologic factor for OPSCC. The radiotherapy-based or surgery-based systemic therapies are recommended equally as first-line treatment, while chemotherapy-based strategy is applied to advanced diseases. Immunotherapy in head and neck squamous cell carcinoma (HNSCC) is currently under the spotlight, especially for patients with advanced diseases. Numerous researches on programmed death-1/programmed death-ligand 1 checkpoint inhibitors have proven beneficial to patients with metastatic HNSCC. In 2016, nivolumab and pembrolizumab were approved as the second-line treatment for advanced metastatic HNSCC by the USA Food and Drug Administration. Soon after, in 2019, the USA Food and Drug Administration approved pembrolizumab as the first-line treatment for patients with unresectable, recurrent, and metastatic HNSCC. It has been reported that HPV-positive HNSCC patients were associated with increased programmed death-ligand 1 expression; however, whether HPV status indicates different treatment outcomes among HNSCC patients treated with immunotherapy has contradicted. Notably, HPV-positive OPSCC exhibits a significantly better clinical response to primary treatment (i.e., radiotherapy, surgery, and chemotherapy) and a more desirable prognosis compared to the HPV-negative OPSCC. This review summarizes the current publications on immunotherapy in HNSCC/OPSCC patients and discusses the impact of HPV infection in immunotherapeutic efficacy, providing an update on the immune landscape and future perspectives in OPSCC.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy