SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xie Beichen) "

Sökning: WFRF:(Xie Beichen)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fatsis-Kavalopoulos, Nikos, et al. (författare)
  • Formation of precisely composed cancer cell clusters using a cell assembly generator (CAGE) for studying paracrine signaling at single-cell resolution
  • 2019
  • Ingår i: Lab on a Chip. - : ROYAL SOC CHEMISTRY. - 1473-0197 .- 1473-0189. ; 19:6, s. 1071-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • The function and behaviour of any given cell in a healthy tissue, or in a tumor, is affected by interactions with its neighboring cells. It is therefore important to create methods that allow for reconstruction of tissue niches in vitro for studies of cell-cell signaling and associated cell behaviour. To this end we created the cell assembly generator (CAGE), a microfluidic device which enables the organization of different cell types into precise cell clusters in a flow chamber compatible with high-resolution microscopy. In proof-of-concept paracrine signalling experiments, 4-cell clusters consisting of one pancreatic -cell and three breast cancer cells were formed. It has previously been established that extracellular ATP induces calcium (Ca2+) release from the endoplasmic reticulum (ER) to the cytosol before it is cleared back into the ER via sarcoplasmic/ER Ca2+ ATPase (SERCA) pumps. Here, ATP release from the -cell was stimulated by depolarization, and dynamic changes in Ca2+ levels in the adjacent cancer cells measured using imaging of the calcium indicator Fluo-4. We established that changes in the concentration of cytosolic Ca2+ in the cancer cells were proportional to the distance from the ATP-releasing -cell. Additionally, we established that the relationship between distance and cytosolic calcium changes were dependent on Ca2+-release from the ER using 5-cell clusters composed of one -cell, two untreated cancer cells and two cancer cells pretreated with Thapsigargin (to deplete the ER of Ca2+). These experiments show that the CAGE can be used to create exact cell clusters, which affords precise control for reductionist studies of cell-cell signalling and permits the formation of heterogenous cell models of specific tissue niches.
  •  
2.
  • Idevall Hagren, Olof, et al. (författare)
  • Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering
  • 2015
  • Ingår i: EMBO Journal. - : EMBO. - 0261-4189 .- 1460-2075. ; 34:17, s. 2291-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P-2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in -cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+.
  •  
3.
  •  
4.
  • Nguyen, Phuoc My, et al. (författare)
  • The PI(4)P phosphatase Sac2 controls insulin granule docking and release
  • 2019
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 218:11, s. 3714-3729
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin granule biogenesis involves transport to, and stable docking at, the plasma membrane before priming and fusion. Defects in this pathway result in impaired insulin secretion and are a hallmark of type 2 diabetes. We now show that the phosphatidylinositol 4-phosphate phosphatase Sac2 localizes to insulin granules in a substrate-dependent manner and that loss of Sac2 results in impaired insulin secretion. Sac2 operates upstream of granule docking, since loss of Sac2 prevented granule tethering to the plasma membrane and resulted in both reduced granule density and number of exocytic events. Sac2 levels correlated positively with the number of docked granules and exocytic events in clonal beta cells and with insulin secretion in human pancreatic islets, and Sac2 expression was reduced in islets from type 2 diabetic subjects. Taken together, we identified a phosphoinositide switch on the surface on insulin granules that is required for stable granule docking at the plasma membrane and impaired in human type 2 diabetes.
  •  
5.
  • Sanchez, Gonzalo, et al. (författare)
  • The β-cell primary cilium is an autonomous Ca2+ compartment for paracrine GABA signaling
  • 2023
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 222:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary cilium is an organelle present in most adult mammalian cells that is considered as an antenna for sensing the local microenvironment. Here, we use intact mouse pancreatic islets of Langerhans to investigate signaling properties of the primary cilium in insulin-secreting β-cells. We find that GABAB1 receptors are strongly enriched at the base of the cilium, but are mobilized to more distal locations upon agonist binding. Using cilia-targeted Ca2+ indicators, we find that activation of GABAB1 receptors induces selective Ca2+ influx into primary cilia through a mechanism that requires voltage-dependent Ca2+ channel activation. Islet β-cells utilize cytosolic Ca2+ increases as the main trigger for insulin secretion, yet we find that increases in cytosolic Ca2+ fail to propagate into the cilium, and that this isolation is largely due to enhanced Ca2+ extrusion in the cilium. Our work reveals local GABA action on primary cilia that involves Ca2+ influx and depends on restricted Ca2+ diffusion between the cilium and cytosol.
  •  
6.
  • Wang, Xuan, 1984-, et al. (författare)
  • Knock-down of ZBED6 in insulin-producing cells promotes N-cadherin junctions between beta-cells and neural crest stem cells in vitro
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the novel transcription factor ZBED6 for the adhesion/clustering of insulin-producing mouse MIN6 and βTC6 cells was investigated. Zbed6-silencing in the insulin producing cells resulted in increased three-dimensional cell-cell clustering and decreased adhesion to mouse laminin and human laminin 511. This was paralleled by a weaker focal adhesion kinase phosphorylation at laminin binding sites. Zbed6-silenced cells expressed less E-cadherin and more N-cadherin at cell-to-cell junctions. A strong ZBED6-binding site close to the N-cadherin gene transcription start site was observed. Three-dimensional clustering in Zbed6-silenced cells was prevented by an N-cadherin neutralizing antibody and by N-cadherin knockdown. Co-culture of neural crest stem cells (NCSCs) with Zbed6-silenced cells, but not with control cells, stimulated the outgrowth of NCSC processes. The cell-to-cell junctions between NCSCs and βTC6 cells stained more intensely for N-cadherin when Zbed6-silenced cells were co-cultured with NCSCs. We conclude that ZBED6 decreases the ratio between N- and E-cadherin. A lower N- to E-cadherin ratio may hamper the formation of three-dimensional beta-cell clusters and cell-to-cell junctions with NCSC, and instead promote efficient attachment to a laminin support and monolayer growth. Thus, by controlling beta-cell adhesion and cell-to-cell junctions, ZBED6 might play an important role in beta-cell differentiation, proliferation and survival.
  •  
7.
  •  
8.
  •  
9.
  • Xie, Beichen, et al. (författare)
  • Feedback regulation of insulin secretion by extended synaptotagmin-1
  • 2019
  • Ingår i: The FASEB Journal. - 0892-6638 .- 1530-6860. ; 33:4, s. 4716-4728
  • Tidskriftsartikel (refereegranskat)abstract
    • Endoplasmic reticulum (ER)-plasma membrane (PM) contacts are dynamic structures with important roles in the regulation of calcium (Ca2+) and lipid homeostasis. The extended synaptotagmins (E-Syts) are ER-localized lipid transport proteins that interact with PM phosphatidylinositol 4,5-bisphosphate in a Ca2+-dependent manner. E-Syts bidirectionally transfer glycerolipids, including diacylglycerol (DAG), between the 2 juxtaposed membranes, but the biologic significance of this transport is still unclear. Using insulin-secreting cells and live-cell imaging, we now show that Ca2+-triggered exocytosis of insulin granules is followed, in sequence, by PM DAG formation and E-Syt1 recruitment. E-Syt1 counteracted the depolarization-induced DAG formation through a mechanism that required both voltage-dependent Ca2+ influx and Ca2+ release from the ER. E-Syt1 knockdown resulted in prolonged accumulation of DAG in the PM, resulting in increased glucose-stimulated insulin secretion. We conclude that Ca2+-triggered exocytosis is temporally coupled to Ca2+-triggered E-Syt1 PM recruitment and removal of DAG to negatively regulate the same process.
  •  
10.
  • Xie, Beichen, 1989- (författare)
  • Membrane lipids and their transfer proteins in β-cells
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Insulin secretion from β-cells is essential for glucose homeostasis and is often dysregulated in diabetes. Intracellular Ca2+ and membrane lipids cooperate to control insulin secretion with high spatial and temporal precision. Phosphoinositide lipids (PIs) and products from their hydrolysis regulate processes such as ion channel conductance and protein localization and activation, but the role of these lipids in insulin secretion from β-cells remains poorly understood. In the present study, live cell Ca2+ imaging combined with molecular tools for acute depletion or synthesis of the major PI in the plasma membrane (PM), PI(4,5)P2, revealed that this lipid positively regulates Ca2+ influx. As a consequence of reduced PI(4,5)P2 and impaired Ca2+ influx, β-cells failed to secrete appropriate amounts of insulin in response to glucose stimulation. In stimulated β-cells, ATP is co-released with insulin, which leads to autocrine purinergic receptor signaling with resulting phospholipase C activation, PI(4,5)P2 hydrolysis and local formation of diacylglycerol (DAG) in the PM. The ER-anchored protein extended synaptotagmin-1 (E-Syt1) binds to PI(4,5)P2 in the PM and transfers DAG from the site of production to the ER in a Ca2+-dependent manner. It was now found that DAG forms locally in microdomains around exocytotic sites and that E-Syt1 was selectively recruited to these sites, where it removed DAG by a mechanism that required an intact lipid transport domain. The DAG removal was part of a negative feedback mechanism, and loss of this feedback as a consequence of reduced E-Syt1 expression resulted in increased glucose-stimulated insulin secretion, likely via enhanced protein kinase C activity. TMEM24, an ER-anchored protein structurally similar to E-Syt1, dynamically localizes to ER-PM contact sites in a Ca2+-dependent manner, where it is responsible for transporting a PI(4,5)P2 precursor to the PM. TMEM24 was now shown to be spatially and temporally regulated by both Ca2+ and DAG. Ca2+ induced TMEM24 dissociation from the PM and this process was counteracted by E-Syt1-mediated DAG transport and subsequent suppression of PKC activity. Although TMEM24 was involved in maintaining the ER Ca2+ stores and in membrane reuptake following insulin granule exocytosis, the protein was dispensable for glucose-stimulated insulin secretion. Together, the work presented in this thesis defines new and important roles of PIs and lipid transfer proteins for normal β-cell function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy