SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Xing Pengwei) "

Search: WFRF:(Xing Pengwei)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cavalli, Marco, et al. (author)
  • The Thioesterase ACOT1 as a Regulator of Lipid Metabolism in Type 2 Diabetes Detected in a Multi-Omics Study of Human Liver
  • 2021
  • In: Omics. - : Mary Ann Liebert. - 1536-2310 .- 1557-8100. ; 25:10, s. 652-659
  • Journal article (peer-reviewed)abstract
    • Type 2 diabetes (T2D) is characterized by pathophysiological alterations in lipid metabolism. One strategy to understand the molecular mechanisms behind these abnormalities is to identify cis-regulatory elements (CREs) located in chromatin-accessible regions of the genome that regulate key genes. In this study we integrated assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) data, widely used to decode chromatin accessibility, with multi-omics data and publicly available CRE databases to identify candidate CREs associated with T2D for further experimental validations. We performed high-sensitive ATAC-seq in nine human liver samples from normal and T2D donors, and identified a set of differentially accessible regions (DARs). We identified seven DARs including a candidate enhancer for the ACOT1 gene that regulates the balance of acyl-CoA and free fatty acids (FFAs) in the cytoplasm. The relevance of ACOT1 regulation in T2D was supported by the analysis of transcriptomics and proteomics data in liver tissue. Long-chain acyl-CoA thioesterases (ACOTs) are a group of enzymes that hydrolyze acyl-CoA esters to FFAs and coenzyme A. ACOTs have been associated with regulation of triglyceride levels, fatty acid oxidation, mitochondrial function, and insulin signaling, linking their regulation to the pathogenesis of T2D. Our strategy integrating chromatin accessibility with DNA binding and other types of omics provides novel insights on the role of genetic regulation in T2D and is extendable to other complex multifactorial diseases.
  •  
2.
  • Li, Chen, et al. (author)
  • Cutaneous squamous cell carcinoma-derived extracellular vesicles exert an oncogenic role by activating cancer-associated fibroblasts
  • 2023
  • In: Cell Death Discovery. - : Springer Nature. - 2058-7716. ; 9:1
  • Journal article (peer-reviewed)abstract
    • Cutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC. Transcriptome analysis of tumor xenografts by RNA-sequencing enabling the simultaneous quantification of both the human and the mouse transcripts revealed that impaired EV-production of cSCC cells prominently altered the phenotype of stromal cells, in particular genes related to extracellular matrix (ECM)-formation and epithelial-mesenchymal transition (EMT). In line with these results, co-culturing of human dermal fibroblasts (HDFs) with cSCC cells, but not with normal keratinocytes in vitro resulted in acquisition of cancer-associated fibroblast (CAF) phenotype. Interestingly, EVs derived from metastatic cSCC cells, but not primary cSCCs or NHEKs, were efficient in converting HDFs to CAFs. Multiplex bead-based flow cytometry assay and mass-spectrometry (MS)-based proteomic analyses revealed the heterogenous cargo of cSCC-derived EVs and that especially EVs derived from metastatic cSCCs carry proteins associated with EV-biogenesis, EMT, and cell migration. Mechanistically, EVs from metastatic cSCC cells result in the activation of TGFβ signaling in HDFs. Altogether, our study suggests that cSCC-derived EVs mediate cancer-stroma communication, in particular the conversion of fibroblasts to CAFs, which eventually contribute to cSCC progression.
  •  
3.
  • Lu, Xi, et al. (author)
  • Cell-lineage controlled epigenetic regulation in glioblastoma stem cells determines functionally distinct subgroups and predicts patient survival
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • The epigenetic regulation of glioblastoma stem cell (GSC) function remains poorly understood. Here, the authors compare the chromatin accessibility landscape of GSC cultures from mice and patients and suggest that the epigenome of GSCs is cell lineage-regulated and could predict patient survival. There is ample support for developmental regulation of glioblastoma stem cells. To examine how cell lineage controls glioblastoma stem cell function, we present a cross-species epigenome analysis of mouse and human glioblastoma stem cells. We analyze and compare the chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for transposase-accessible chromatin using sequencing. This separates the mouse cultures according to cell of origin and identifies three human glioblastoma stem cell clusters that show overlapping characteristics with each of the mouse groups, and a distribution along an axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma stem cell clusters display distinct functional properties and can separate patient survival. Cross-species analyses reveals conserved epigenetic regulation of mouse and human glioblastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell properties and patient survival.
  •  
4.
  • Neves, Inês, et al. (author)
  • Paired glioblastoma cell cultures of the fluorescent bulk tumor and non-fluorescent tumor margin display differential phenotypes and cell states across patients
  • Other publication (other academic/artistic)abstract
    • Glioblastoma is an aggressive and therapy-resistant primary brain tumor with a dismal prognosis. The inevitable recurrence is in almost all patients in contact with the resection cavity, suggesting the local peritumoral area as its origin. Glioblastoma cells of this region have seldom been studied and few authenticated models exist. We have explanted matched tissue samples from the bulk tumor and local tumor edge of 13 glioblastoma patients of which 7 were sustainable beyond passage 6. Each edge culture was more invasive and less self-renewing and tumorigenic compared to its paired bulk culture. Three pairs of edge and bulk cultures were profiled with a combined single nucleus (sn) RNA- and ATAC-sequencing. Transcriptome analysis displayed for all patients a shift towards AC-MES cell states in the edge cultures. Chromatin-accessibility profiles uncovered differential regulatory networks with edge cells being enriched for transcription factor (TF) motifs of invasion, neurons, and immune cells. We propose that edge cells have been epigenetically reprogrammed by their unique interactions with various cell types in the peritumoral region. The fact that glioblastoma edge cells display distinct epigenetic regulation compared to their bulk tumor cells has implications for therapy development that should be targeted to and tested on the relapse-causing glioblastoma edge cells.
  •  
5.
  • Zhang, Hua, et al. (author)
  • Profiling chromatin accessibility in formalin-fixed paraffin-embedded samples
  • 2022
  • In: Genome Research. - : Cold Spring Harbor Laboratory Press (CSHL). - 1088-9051 .- 1549-5469. ; 32:1, s. 150-161
  • Journal article (peer-reviewed)abstract
    • Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for >10 yr. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators to better understand epigenetic regulation in cancer and precision medicine. 
  •  
6.
  • Zhao, Linxuan, et al. (author)
  • A Highly Sensitive Method to Efficiently Profile the Histone Modifications of FFPE Samples
  • 2022
  • In: Bio-protocol. - : Bio-Protocol. - 2331-8325. ; 12:10
  • Journal article (peer-reviewed)abstract
    • The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. Nevertheless, it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissue of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), highly sensitive method to efficiently profile histone modifications in FFPE tissue by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We showed a very small piece of FFPE tissue section containing similar to 4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. In archived FFPE human colorectal and human glioblastoma cancer tissue, H3K27ac FACT-seq revealed disease specific super enhancers. In summary, FACT-seq allows researchers to decode histone modifications like H3K27ac and H3K27me3 in archival FFPE tissues with high sensitivity, thus allowing us to understand epigenetic regulation.
  •  
7.
  • Zhao, Linxuan, et al. (author)
  • FACT-seq : profiling histone modifications in formalin-fixed paraffin-embedded samples with low cell numbers
  • 2021
  • In: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 49:21
  • Journal article (peer-reviewed)abstract
    • The majority of biopsies in both basic research and translational cancer studies are preserved in the format of archived formalin-fixed paraffin-embedded (FFPE) samples. Profiling histone modifications in archived FFPE tissues is critically important to understand gene regulation in human disease. The required input for current genome-wide histone modification profiling studies from FFPE samples is either 10-20 tissue sections or whole tissue blocks, which prevents better resolved analyses. But it is desirable to consume a minimal amount of FFPE tissue sections in the analysis as clinical tissues of interest are limited. Here, we present FFPE tissue with antibody-guided chromatin tagmentation with sequencing (FACT-seq), the first highly sensitive method to efficiently profile histone modifications in FFPE tissues by combining a novel fusion protein of hyperactive Tn5 transposase and protein A (T7-pA-Tn5) transposition and T7 in vitro transcription. FACT-seq generates high-quality chromatin profiles from different histone modifications with low number of FFPE nuclei. We proved a very small piece of FFPE tissue section containing similar to 4000 nuclei is sufficient to decode H3K27ac modifications with FACT-seq. H3K27ac FACT-seq revealed disease-specific super enhancers in the archived FFPE human colorectal and human glioblastoma cancer tissue. In summary, FACT-seq allows decoding the histone modifications in archival FFPE tissues with high sensitivity and help researchers to better understand epigenetic regulation in cancer and human disease.
  •  
8.
  • Zhao, Xue-Ke, et al. (author)
  • Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma
  • 2021
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Journal article (peer-reviewed)abstract
    • The role of focal amplifications and extrachromosomal DNA (ecDNA) is unknown in gastric cardia adenocarcinoma (GCA). Here, we identify frequent focal amplifications and ecDNAs in Chinese GCA patient samples, and find focal amplifications in the GCA cohort are associated with the chromothripsis process and may be induced by accumulated DNA damage due to local dietary habits. We observe diverse correlations between the presence of oncogene focal amplifications and prognosis, where ERBB2 focal amplifications positively correlate with prognosis and EGFR focal amplifications negatively correlate with prognosis. Large-scale ERBB2 immunohistochemistry results from 1668 GCA patients show survival probability of ERBB2 positive patients is lower than that of ERBB2 negative patients when their surviving time is under 2 years, however, the tendency is opposite when their surviving time is longer than 2 years. Our observations indicate that the ERBB2 focal amplifications may represent a good prognostic marker in GCA patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view