SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Baojun) "

Sökning: WFRF:(Xu Baojun)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algethami, Jari S., et al. (författare)
  • Bee Pollen : Clinical Trials and Patent Applications
  • 2022
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 14:14
  • Forskningsöversikt (refereegranskat)abstract
    • Bee pollen is a natural cocktail of floral nectar, flower pollen, enzymes, and salivary secretions produced by honeybees. Bee pollen is one of the bee products most enriched in proteins, polysaccharides, polyphenols, lipids, minerals, and vitamins. It has a significant health and medicinal impact and provides protection against many diseases, including diabetes, cancer, infectious, and cardiovascular. Bee pollen is commonly promoted as a cost-effective functional food. In particular, bee pollen has been applied in clinical trials for allergies and prostate illnesses, with a few investigations on cancer and skin problems. However, it is involved in several patents and health recipes to combat chronic health problems. This review aimed to highlight the clinical trials and patents involving bee pollen for different cases and to present the role of bee pollen as a supplementary food and a potential product in cosmetic applications.
  •  
2.
  • El-Seedi, Hesham, et al. (författare)
  • Honey Bee Products : Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties
  • 2022
  • Ingår i: Frontiers in Nutrition. - : Frontiers Media SA. - 2296-861X. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Inflammation is a defense process triggered when the body faces assaults from pathogens, toxic substances, microbial infections, or when tissue is damaged. Immune and inflammatory disorders are common pathogenic pathways that lead to the progress of various chronic diseases, such as cancer and diabetes. The overproduction of cytokines, such as interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha, is an essential parameter in the clinical diagnosis of auto-inflammatory diseases. In this review, the effects of bee products have on inflammatory and autoimmune diseases are discussed with respect to the current literature. The databases of Google Scholar, PubMed, Science Direct, Sci-Finder and clinical trials were screened using different combinations of the following terms: immunomodulatory, anti-inflammatory, bee products, honey, propolis, royal jelly, bee venom, bee pollen, bee bread, preclinical trials, clinical trials, and safety. Honey bee products, including propolis, royal jelly, honey, bee venom, and bee pollen, or their bioactive chemical constituents like polyphenols, demonstrate interesting therapeutic potential in the regulation of inflammatory mediator production as per the increase of TNF-alpha, IL-1 beta, IL-6, Il-2, and Il-7, and the decrease of reactive oxygen species (ROS) production. Additionally, improvement in the immune response via activation of B and T lymphocyte cells, both in in vitro, in vivo and in clinical studies was reported. Thus, the biological properties of bee products as anti-inflammatory, immune protective, antioxidant, anti-apoptotic, and antimicrobial agents have prompted further clinical investigation.
  •  
3.
  • El-Seedi, Hesham R., et al. (författare)
  • Naturally Occurring Xanthones; Biological Activities, Chemical Profiles and In Silico Drug Discovery
  • 2024
  • Ingår i: Current Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 0929-8673 .- 1875-533X. ; 31:1, s. 62-101
  • Forskningsöversikt (refereegranskat)abstract
    • Xanthones are widely distributed polyphenols, present commonly in higher plants; Garcinia, Calophyllum, Hypericum, Platonia, Mangifera, Gentiana and Swertia. Xanthone tricyclic scaffold is able to interact with different biological targets, showing antibacterial and cytotoxic effects, as well as potent effects against osteoarthritis, malaria, and cardiovascular diseases. Thus, in this article we focused on pharmacological effects, applications and preclinical studies with the recent updates of xanthon & PRIME;s isolated compounds from 2017-2020. We found that only a-mangostin, gambogic acid, and mangiferin, have been subjected to preclinical studies with particular emphasis on the development of anticancer, diabetes, antimicrobial and hepatoprotective therapeutics. Molecular docking calculations were performed to predict the binding affinities of xanthone-derived compounds against SARS-CoV-2 M-pro. According to the results, cratoxanthone E and morellic acid demonstrated promising binding affinities towards SARS-CoV-2 M-pro with docking scores of -11.2 and -11.0 kcal/mol, respectively. Binding features manifested the capability of cratoxanthone E and morellic acid to exhibit nine and five hydrogen bonds, respectively, with the key amino acids of the M-pro active site. In conclusion, cratoxanthone E and morellic acid are promising anti-COVID-19 drug candidates that warrant further detailed in vivo experimental estimation and clinical assessment.
  •  
4.
  • El-Seedi, Hesham R., et al. (författare)
  • Plant extracts and compounds for combating schistosomiasis
  • 2023
  • Ingår i: Phytochemistry Reviews. - : Springer Science and Business Media LLC. - 1568-7767 .- 1572-980X. ; 22:6, s. 1691-1806
  • Tidskriftsartikel (refereegranskat)abstract
    • Schistosomiasis is a vector-borne water-based disease caused by Schistosoma blood flukes. It mostly affects people in low-income regions, 90% of reported cases being in developing countries. Schistosoma has a complex lifecycle, alternately infecting mammalian hosts and snails. The snails hosting the parasite are the most viable targets. Selective preparations for reducing the parasite pool in snails and infected water are required as current molluscicides are also nontoxic to other organisms, including fish, and thus affect food supplies in infected areas. Plants (e.g. Annona crassiflora Mart., A. muricata L., and A. montana Macfad.) are attractive potential sources as alternative molluscicides and novel entity to treat the disease owned to their diverse biologically potent compounds including; saponins, alkaloids, terpenoids, and tannins. Additionally, they can be locally cultivated, providing income for farmers and reducing treatment costs. Here, we review plants, plant extracts and isolated compounds that have shown activities against the host snails or Schistosoma in various parts of its life cycle. Plants have a lot of potential and will continue to contribute feasible, effective medicines and/or pesticides; more research is warranted to fully explore their future applications.
  •  
5.
  • El-Seedi, Hesham R., et al. (författare)
  • Plant extracts and compounds for combating schistosomiasis
  • 2023
  • Ingår i: Phytochemistry Reviews. - : Springer. - 1568-7767 .- 1572-980X. ; 22:6, s. 1691-1806
  • Tidskriftsartikel (refereegranskat)abstract
    • Schistosomiasis is a vector-borne water-based disease caused by Schistosoma blood flukes. It mostly affects people in low-income regions, 90% of reported cases being in developing countries. Schistosoma has a complex lifecycle, alternately infecting mammalian hosts and snails. The snails hosting the parasite are the most viable targets. Selective preparations for reducing the parasite pool in snails and infected water are required as current molluscicides are also nontoxic to other organisms, including fish, and thus affect food supplies in infected areas. Plants (e.g. Annona crassiflora Mart., A. muricata L., and A. montana Macfad.) are attractive potential sources as alternative molluscicides and novel entity to treat the disease owned to their diverse biologically potent compounds including; saponins, alkaloids, terpenoids, and tannins. Additionally, they can be locally cultivated, providing income for farmers and reducing treatment costs. Here, we review plants, plant extracts and isolated compounds that have shown activities against the host snails or Schistosoma in various parts of its life cycle. Plants have a lot of potential and will continue to contribute feasible, effective medicines and/or pesticides; more research is warranted to fully explore their future applications.
  •  
6.
  • Felsberg, Michael, et al. (författare)
  • The Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge Results
  • 2015
  • Ingår i: Proceedings of the IEEE International Conference on Computer Vision. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467383905 ; , s. 639-651
  • Konferensbidrag (refereegranskat)abstract
    • The Thermal Infrared Visual Object Tracking challenge 2015, VOTTIR2015, aims at comparing short-term single-object visual trackers that work on thermal infrared (TIR) sequences and do not apply prelearned models of object appearance. VOT-TIR2015 is the first benchmark on short-term tracking in TIR sequences. Results of 24 trackers are presented. For each participating tracker, a short description is provided in the appendix. The VOT-TIR2015 challenge is based on the VOT2013 challenge, but introduces the following novelties: (i) the newly collected LTIR (Linköping TIR) dataset is used, (ii) the VOT2013 attributes are adapted to TIR data, (iii) the evaluation is performed using insights gained during VOT2013 and VOT2014 and is similar to VOT2015.
  •  
7.
  • Huang, Kaiyuan, et al. (författare)
  • Critical review on chemical compositions and health-promoting effects of mushroom Agaricus blazei Murill
  • 2022
  • Ingår i: CURRENT RESEARCH IN FOOD SCIENCE. - : Elsevier. - 2665-9271. ; 5, s. 2190-2203
  • Forskningsöversikt (refereegranskat)abstract
    • Agaricus blazei Murrill (AbM) is a medical mushroom which has huge potential commercial value with various health-promoting functions. However, the chemical composition and therapeutic mechanisms of AbM have not been concluded systematically yet. Thus, this study aims to comprehensively summarize the phytochemical profiles and thoroughly characterize the health promotion effects such as the antitumor and antidiabetic impact of AbM in in vivo and in vitro. The AbM consists of abundant bioactive substances; polysaccharides, lipids including ergosterol, sterols, proteins, vitamin B, C and D, and phenolic compounds. Several studies have claimed that Agaricus blazei Murrill polysaccharides (AbMP) had immunoregulation, anti-inflammatory, hep-atoprotective, and antitumor function both in vivo and in vitro. Meanwhile, AbM extracts were thought to cure diabetes and bacterial infection, exhibiting anticarcinogenic and antimutagenic functions. But some principles behind health-promoting effects have not been clarified. Additionally, AbM related clinical trials are limited and further discovery need to be conducted. Therefore, this paper has concluded the health promotion impact with corresponding mechanisms of AbM and indicated its potential medical usage as functional food in the future.
  •  
8.
  • Kristan, Matej, et al. (författare)
  • The Visual Object Tracking VOT2015 challenge results
  • 2015
  • Ingår i: Proceedings 2015 IEEE International Conference on Computer Vision Workshops ICCVW 2015. - : IEEE. - 9780769557205 ; , s. 564-586
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge 2015, VOT2015, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 62 trackers are presented. The number of tested trackers makes VOT 2015 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2015 challenge that go beyond its VOT2014 predecessor are: (i) a new VOT2015 dataset twice as large as in VOT2014 with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2014 evaluation methodology by introduction of a new performance measure. The dataset, the evaluation kit as well as the results are publicly available at the challenge website(1).
  •  
9.
  • Li, Zhaojun, 1989, et al. (författare)
  • High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants
  • 2018
  • Ingår i: Nano Energy. - : Elsevier BV. - 2211-2855. ; 45, s. 368-379
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing interests have been devoted to the synthesis of polymer acceptors as alternatives to fullerene derivatives to realize high-performance and stable all-polymer solar cells (all-PSCs). So far, one of the key factors that limit the performance of all-PSCs is low photocurrent density (normally < 14 mA/cm 2 ). One potential solution is to improve the dielectric constants (ε r ) of polyme r :polymer blends, which tend to reduce the binding energy of excitons, thus boosting the exciton dissociation efficiencies. Nevertheless, the correlation between ε r and photovoltaic performance has been rarely investigated for all-PSCs. In this work, five fluorinated naphthalene diimide (NDI)-based acceptor polymers, with different content of fluorine were synthesized. The incorporation of fluorine increased the ε r of the acceptor polymers and blend films, which improved the charge generation and overall photocurrent of the all-PSCs. As a result, the PTB7-Th:PNDI-FT10 all-PSC attained a high power conversion efficiency (PCE) of 7.3% with a photocurrent density of 14.7 mA/cm 2 , which surpassed the values reported for the all-PSC based on the non-fluorinated acceptor PNDI-T10. Interestingly, similarly high photovoltaic performance was maintained regardless of a large variation of donor:acceptor ratios, which revealed the good morphological tolerance and the potential for robust production capability of all-PSCs.
  •  
10.
  • Luo, Jinhai, et al. (författare)
  • Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway
  • 2022
  • Ingår i: Pharmacological Research. - : Elsevier BV. - 1096-1186 .- 1043-6618. ; 184
  • Forskningsöversikt (refereegranskat)abstract
    • Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/β-catenin signaling pathway. The activation of Wnt/β-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor β-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/β-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/β-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy