SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Chi) "

Sökning: WFRF:(Xu Chi)

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
6.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
7.
  • Ablikim, M., et al. (författare)
  • Measurements of (XcJ)-> K+K-K+K- decays
  • 2006
  • Ingår i: Physics Letters B. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 642:3, s. 197-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 14M psi(2S) events taken with the BESII detector, chi(cJ) -> 2(K+K-) decays are studied. For the four-kaon final state, the branching fractions are B(chi(c0,1,2) ->.2(K+K-)) = (3.48 +/- 0.23 +/- 0.47) x 10(-3), (0.70 +/- 0.13 +/- 0.10) x 10(-3), and (2.17 +/- 0.20 +/- 0.31) x 10(-3). For the phi K+K- final state, the branching fractions, which are measured for the first time, are B(chi(c0,1,2) -> phi K+K-) = (1.03 +/- 0.22 +/- 0.15) x 10(-3), (0.46 +/- 0.16 +/- 0.06) x 10(-3), and (1.67 +/- 0.26 +/- 0.24) x 10(-4). For the phi phi final state, B(chi(c0,2) -> phi phi) = (0.94 +/- 0.21 +/- 0.13) x 10(-3) and (1.70 +/- 0.30 +/- 0.25) x 10(-3).
  •  
8.
  • Kristan, Matej, et al. (författare)
  • The Ninth Visual Object Tracking VOT2021 Challenge Results
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021). - : IEEE COMPUTER SOC. - 9781665401913 ; , s. 2711-2738
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2021 challenge was composed of four sub-challenges focusing on different tracking domains: (i) VOT-ST2021 challenge focused on short-term tracking in RGB, (ii) VOT-RT2021 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2021 focused on long-term tracking, namely coping with target disappearance and reappearance and (iv) VOT-RGBD2021 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2021 dataset was refreshed, while VOT-RGBD2021 introduces a training dataset and sequestered dataset for winner identification. The source code for most of the trackers, the datasets, the evaluation kit and the results along with the source code for most trackers are publicly available at the challenge website(1).
  •  
9.
  • Wuttke, Matthias, et al. (författare)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
10.
  • de las Fuentes, Lisa, et al. (författare)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70
Typ av publikation
tidskriftsartikel (58)
konferensbidrag (8)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (69)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Hsu, Fang Chi (14)
Wiklund, Fredrik (10)
Xu, Jianfeng (10)
Sun, Jielin (10)
Grönberg, Henrik (9)
Stattin, Pär (8)
visa fler...
Duggan, David (8)
Isaacs, William B (8)
Zheng, S Lilly (7)
Zhu, Yi (6)
Xu, Liang (6)
Snieder, Harold (6)
Liu, J. (5)
Adami, Hans Olov (5)
Freedman, Barry I. (5)
Langefeld, Carl D. (5)
Ridker, Paul M. (5)
Chasman, Daniel I. (5)
Amin, Najaf (5)
van Duijn, Cornelia ... (5)
Magnusson, Patrik K ... (5)
Rotter, Jerome I. (5)
Gieger, Christian (5)
Strauch, Konstantin (5)
Waldenberger, Melani ... (5)
Froguel, Philippe (5)
Metspalu, Andres (5)
Meitinger, Thomas (5)
Chen, Xu (5)
Harris, Tamara B (5)
Uitterlinden, André ... (5)
Psaty, Bruce M (5)
Hayward, Caroline (5)
Elliott, Paul (5)
Gudnason, Vilmundur (5)
Campbell, Archie (5)
Boerwinkle, Eric (5)
van der Harst, Pim (5)
Friedlander, Yechiel (5)
Liu, Jianjun (5)
Wiley, Kathleen E (5)
Isaacs, Sarah D (5)
Canouil, Mickaël (5)
Cheng, Ching-Yu (5)
Tai, E. Shyong (5)
Wang, Ya Xing (5)
Wong, Tien Yin (5)
Feitosa, Mary F. (5)
Kraja, Aldi T. (5)
van Dam, Rob M. (5)
visa färre...
Lärosäte
Karolinska Institutet (30)
Umeå universitet (16)
Lunds universitet (14)
Linköpings universitet (13)
Uppsala universitet (10)
Kungliga Tekniska Högskolan (9)
visa fler...
Göteborgs universitet (7)
Stockholms universitet (6)
Chalmers tekniska högskola (6)
Örebro universitet (4)
Sveriges Lantbruksuniversitet (3)
Mälardalens universitet (2)
Handelshögskolan i Stockholm (2)
Högskolan Dalarna (2)
Högskolan i Halmstad (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (70)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (35)
Medicin och hälsovetenskap (24)
Teknik (5)
Samhällsvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy