SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Ranran) "

Sökning: WFRF:(Xu Ranran)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Anying, et al. (författare)
  • Diagnostic performance of initial blood urea nitrogen combined with D-dimer levels for predicting in-hospital mortality in COVID-19 patients
  • 2020
  • Ingår i: International Journal of Antimicrobial Agents. - : ELSEVIER. - 0924-8579 .- 1872-7913. ; 56:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The crude mortality rate in critical pneumonia cases with coronavirus disease 2019 (COVID-19) reaches 49%. This study aimed to test whether levels of blood urea nitrogen (BUN) in combination with D-dimer were predictors of in-hospital mortality in COVID-19 patients. The clinical characteristics of 305 COVID19 patients were analysed and were compared between the survivor and non-survivor groups. Of the 305 patients, 85 (27.9%) died and 220 (72.1%) were discharged from hospital. Compared with discharged cases, non-survivor cases were older and their BUN and D-dimer levels were significantly higher ( P < 0.0 0 01). Least absolute shrinkage and selection operator (LASSO) and multivariable Cox regression analyses identified BUN and D-dimer levels as independent risk factors for poor prognosis. Kaplan-Meier analysis showed that elevated levels of BUN and D-dimer were associated with increased mortality (logrank, P 0.0 0 01). The area under the curve for BUN combined with D-dimer was 0.94 (95% CI 0.90-0.97), with a sensitivity of 85% and specificity of 91%. Based on BUN and D-dimer levels on admission, a nomogram model was developed that showed good discrimination, with a concordance index of 0.94. Together, initial BUN and D-dimer levels were associated with mortality in COVID-19 patients. The combination of BUN 4.6 mmol/L and D-dimer > 0.845 mu g/mL appears to identify patients at high risk of in-hospital mortality, therefore it may prove to be a powerful risk assessment tool for severe COVID-19 patients. (c) 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
  •  
2.
  • Li, Ting, et al. (författare)
  • Total genetic contribution assessment across the human genome
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the overall magnitude of every single locus' genetic effect on the widely measured human phenome is of great challenge. We introduce a unified modelling technique that can consistently provide a total genetic contribution assessment (TGCA) of a gene or genetic variant without thresholding genetic association signals. Genome-wide TGCA in five UK Biobank phenotype domains highlights loci such as the HLA locus for medical conditions, the bone mineral density locus WNT16 for physical measures, and the skin tanning locus MC1R and smoking behaviour locus CHRNA3 for lifestyle. Tissue-specificity investigation reveals several tissues associated with total genetic contributions, including the brain tissues for mental health. Such associations are driven by tissue-specific gene expressions, which share genetic basis with the total genetic contributions. TGCA can provide a genome-wide atlas for the overall genetic contributions in each particular domain of human complex traits. Quantifying the effects of individual loci on the human phenome is a challenging task. Here, the authors introduce a modelling technique, TGCA, that assesses total genetic contribution per locus and apply this to UK Biobank phenotype domains, revealing top loci and links to tissue-specific gene expression.
  •  
3.
  • Zhang, Ranran, et al. (författare)
  • Dose-dependent enhancement of bioactivity by surface ZnO nanostructures on acid-etched pure titanium
  • 2019
  • Ingår i: Advances in Applied Ceramics. - : Informa UK Limited. - 1743-6753 .- 1743-6761. ; 118:3, s. 121-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc (Zn) is found to be essential in biologic osseous functions, and deficiency of Zn may cause delayed skeletal growth and osteoporosis. Additionally, Zn-based coatings are reported to be effective to promote the bioactivity of implants. In this study, we employed the hydrothermal treatment to incorporate Zn into the surface of acid-etched pure Ti. The process was conducted in ammonia solution with an increased Zn precursor concentration (0.0002M, 0.002M and 0.02M, respectively). XPS analysis demonstrated that the nanostructures were composed of ZnO. Proliferation and alkaline phosphatase (ALP) activity of osteoblast-like SaOS-2 cells were enhanced dose-dependently, compared to those on the acid-etched pure Ti without ZnO nanostructures. This study addresses a favourable surface modification method to improve the bioactivity of implants.
  •  
4.
  • Zhang, Ranran, et al. (författare)
  • Micro/nanostructured TiO2/ZnO coating enhances osteogenic activity of SaOS-2 cells
  • 2019
  • Ingår i: Artificial cells nanomedicine and biotechnology. - : Informa UK Limited. - 2169-1401 .- 2169-141X. ; 47:1, s. 2838-2845
  • Tidskriftsartikel (refereegranskat)abstract
    • Although titanium implants account for a large proportion of the commercial dental market, their bioactivity are inadequate in many applications. A micro- and nano- scale hierarchical surface topography of the implant is suggested for rapid osseointegration from the biomimetic perspective. Moreover, Zinc (Zn) is an essential element in the skeletal system. Thus, a micro/nanostructured TiO2/ZnO coating, produced by micro-arc oxidation, and hydrothermal treatment, and heat treatment, was designed to endow the implant surface with enhanced osteogenic capacity. Physiochemical properties and biological effects of this coating were investigated in our study. The annealed micro/nanostructured TiO2/ZnO coating exhibited higher hydrophilicity and fibronectin adsorption ability compared to the micro-arc oxidation modified TiO2 coating. SaOS-2 cells grown on the annealed micro/nanostructured TiO2/ZnO coating showed increased alkaline phosphatase activity and collagen secretion, and immunofluorescence labeling revealed an upregulation of osteopontin, collagen type iota and osteocalcin. The micro/nanostructure and incorporation of Zn were considered to perform positive effect on the enhanced osteogenic activity of SaOS-2 cells. In conclusion, the micro/nanostructured TiO2/ZnO structure is simple, stable, and easy to produce and scale up, has promising applications in the surface modification of titanium implants.
  •  
5.
  • Zhang, Ranran, et al. (författare)
  • ZnO nanostructures enhance the osteogenic capacity of SaOS-2 cells on acid-etched pure Ti
  • 2018
  • Ingår i: Materials letters (General ed.). - : Elsevier BV. - 0167-577X .- 1873-4979. ; 215, s. 173-175
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc oxide (ZnO) has attracted a great deal of interest due to its electronic and optical properties, and has potential applications in biomedical field, while few studies have been conducted to investigate its biocompatibility. In this study, we prepared nanostructured ZnO on acid-etched pure Ti surface through a moderate hydrothermal treatment in ammonia solution (pH = 12.6). By changing Zn precursor concentration and hydrothermal duration, it was feasible to synthesis flake-like ZnO nanostructures with variable spacings. The adhesion, proliferation and alkaline phosphatase (ALP) activity of SaOS-2 cells were enhanced on the ZnO nanostructures when the Zn precursor concentration was 0.02 M and the hydrothermal duration was 4 h, compared to those on the acid-etched pure Ti without ZnO nanostructures. Narrower spacings (< 70 nm) between ZnO nanostructures are considered to contribute to this enhancement. Together, the results indicate that the superposition of ZnO nanostructures on titanium surfaces may be beneficial for the enhanced biological performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy