SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xumerle L) "

Sökning: WFRF:(Xumerle L)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Zago, E, et al. (författare)
  • Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients
  • 2022
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1, s. 1330-
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced age represents one of the major risk factors for Parkinson’s Disease. Recent biomedical studies posit a role for microRNAs, also known to be remodelled during ageing. However, the relationship between microRNA remodelling and ageing in Parkinson’s Disease, has not been fully elucidated. Therefore, the aim of the present study is to unravel the relevance of microRNAs as biomarkers of Parkinson’s Disease within the ageing framework. We employed Next Generation Sequencing to profile serum microRNAs from samples informative for Parkinson’s Disease (recently diagnosed, drug-naïve) and healthy ageing (centenarians) plus healthy controls, age-matched with Parkinson’s Disease patients. Potential microRNA candidates markers, emerging from the combination of differential expression and network analyses, were further validated in an independent cohort including both drug-naïve and advanced Parkinson’s Disease patients, and healthy siblings of Parkinson’s Disease patients at higher genetic risk for developing the disease. While we did not find evidences of microRNAs co-regulated in Parkinson’s Disease and ageing, we report that hsa-miR-144-3p is consistently down-regulated in early Parkinson’s Disease patients. Moreover, interestingly, functional analysis revealed that hsa-miR-144-3p is involved in the regulation of coagulation, a process known to be altered in Parkinson’s Disease. Our results consistently show the down-regulation of hsa-mir144-3p in early Parkinson’s Disease, robustly confirmed across a variety of analytical and experimental analyses. These promising results ask for further research to unveil the functional details of the involvement of hsa-mir144-3p in Parkinson’s Disease.
  •  
3.
  •  
4.
  •  
5.
  • Giuliani, A, et al. (författare)
  • Genome-Wide Methylation Changes Associated with Replicative Senescence and Differentiation in Endothelial and Bone Marrow Mesenchymal Stromal Cells
  • 2023
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 12:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone marrow mesenchymal stromal cells (BMSCs) are multipotent cells able to self-renew and differentiate, depending on the microenvironment, into adipocytes and osteoblasts. These cells have a limited number of replications and enter replicative senescence during in vitro expansion. The role of DNA methylation (DNAm) assumes importance in cell function and commitment; however, its exact contribution to BMSC differentiation and replicative senescence is still unclear. We performed a genome-wide DNAm analysis on BMSCs cultured in vitro at early passages and induced to differentiate into adipocytes and osteoblasts, and on replicative senescent BMSCs and HUVECs, to identify DNAm patterns of senescence and differentiation. We also compared BMSCs and HUVECs in replicative senescence and found that, in both cellular systems, genome-wide hypomethylation was accompanied by a higher-than-expected overlap of differentially methylated positions (DMPs) and concordance in terms of direction of the change. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on lineage-independent senescence-associated DMPs revealed 16 common pathways, including Insulin resistance, Molecule adhesion, and Wnt/β-catenin signaling. In both adipogenesis and osteogenesis, we observed a general demethylation of CpG sites compared with undifferentiated BMSCs with a higher number of DMPs in osteogenesis. KEGG analysis resulted in 30 pathways enriched in osteoblasts and only 2 in adipocytes when compared to undifferentiated cells. When comparing differentiated BMSCs with senescent ones, osteogenesis exhibited a greater overlap with senescence in terms of number of DMPs and direction of methylation change compared to adipogenesis. In conclusion, this study may be useful for future research on general mechanisms that occur in replicative senescence and furthermore to identify trajectories of BMSC differentiation and common aspects of differentiated and senescent cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy