SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(YANCOPOULOS GD) "

Sökning: WFRF:(YANCOPOULOS GD)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • ILAG, LL, et al. (författare)
  • Pan-neurotrophin 1: a genetically engineered neurotrophic factor displaying multiple specificities in peripheral neurons in vitro and in vivo
  • 1995
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 92:2, s. 607-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Pan-neurotrophin 1 (PNT-1) is a synthetic trophic factor engineered by combining active domains of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3) into an NT-3 backbone. This molecule was produced in transiently transfected COS cells or in baculovirus-infected insect cells transfected COS cells or in baculovirus-infected insect cells and subsequently purified to homogeneity. Saturation binding in embryonic spinal sensory neurons demonstrated a greater number of high-affinity binding sites for PNT-1 than for its parental molecule NT-3. PNT-1 was shown to efficiently block the chemical crosslinking of NGF, BDNF, and NT-3 to their cognate Trk receptors and to the low-affintiy NGF receptor expressed on neuronal and nonneuronal cells. PNT-1 stimulated survival and proliferation of MG87 fibroblasts expressing either TrkA, TrkB, or TrkC. PNT-1 also promoted survival of a greater number of embryonic dorsal root ganglion neurons than any of the other neurotrophins alone, and its effects were equivalent to a combination of NGF, BDNF, and NT-3. Analysis of receptor-specific neurotrophic activities demonstrated that PNT-1 efficiently rescued TrkA mRNA-containing sympathetic neurons and TrkB and TrkC mRNA-containing sensory neurons from the dorsal root and nodose ganglia. Finally, PNT-1 showed robust retrograde transport to DRG neurons in vivo after injection into the sciatic nerve. Radiolabeled PNT-1 accumulated in small-, medium-, and large-sized neurons. Coinjection with different unlabeled neurotrophins inhibited PNT-1 transport in distinct subpopulations of neurons of different sizes, suggesting that this molecule affects sensory neurons of different modalities. These results indicate that PNT-1 is a potent and multispecific neurotrophic factor that may be useful in the treatment of peripheral neurophathies and nerve damage.
  •  
6.
  • Rice, Frank, et al. (författare)
  • Differential dependency of unmyelinated and A delta epidermal and upper dermal innervation on neurotrophins, trk receptors, and p75LNGFR
  • 1998
  • Ingår i: Developmental Biology. - 0012-1606 .- 1095-564X. ; 198:1, s. 57-81
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the nerve growth factor (NGF) family of neurotrophins and their receptors was examined on the cutaneous innervation in the mystacial pads of mice. Ten sets of unmyelinated and thinly myelinated sensory and autonomic innervation were evaluated that terminated in the epidermis, upper dermis, and upper part of the intervibrissal hair follicles. Mystacial pads were analyzed from newborn to 4-week-old mice that had homozygous functional deletions of the genes for NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), tyrosine kinase (trk) A, trkB, trkC, or p75. Mystacial pads were also analyzed in adult transgenic mice that had overproduction of NGF, BDNF, or NT-3 driven by a keratin promoter gene. The innervation was revealed by using immunofluorescence and immunocytochemistry with antibodies for protein gene product (PGP) 9.5, calcitonin gene-related product (CGRP), substance P (SP), galanin (GAL), neuropeptide Y (NPY), tyrosine hydroxylase (TH), and a neurofilament protein. The cumulative results indicated that NGF/trkA signaling plays a major role in the outgrowth and proliferation of sensory axons, whereas NT-3/ trkA signaling plays a major role in the formation of sensory endings. TrkC is also essential for the development of three sets of trkA-dependent sensory innervation that coexpress CGRP, SP, and GAL. Another set of sensory innervation that only coexpressed CGRP and SP was solely dependent upon NGF and trkA. Surprisingly, most sets of trkA-dependent sensory innervation are suppressed by trkB perhaps interacting with p75. BDNF and NT-4 appear to mediate this suppressing effect in the upper dermis and NT-4 in the epidermis. In contrast to sensory innervation, sympathetic innervation to the necks of intervibrissal hair follicles depends upon NGF/trkA signaling interacting with p75 for both the axon outgrowth and ending formation. Although NT-3/trkA signaling is essential for the full complement of sympathetic neurons, NT-3 is detrimental to the formation of sympathetic terminations to the necks of hair follicles. TrkB signaling mediated by BDNF but not NT-4 also suppresses these sympathetic terminations. One sparse set of innervation, perhaps parasympathetic, terminating at the necks of hair follicles is dependent solely upon NT-3 and trkC. Taken together, our results indicate that the innervation of the epidermis, upper dermis, and the upper portion of hair follicles is regulated by a competitive balance between promoting and suppressing effects of the various neurotrophins.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy