SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yadav Akhilesh K.) "

Sökning: WFRF:(Yadav Akhilesh K.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abraham, Nabil M., et al. (författare)
  • Pathogen-mediated manipulation of arthropod microbiota to promote infection
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:5, s. E781-E790
  • Tidskriftsartikel (refereegranskat)abstract
    • Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal D-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.
  •  
2.
  • Gallagher, Laura A., et al. (författare)
  • Impaired Alanine Transport or Exposure to D-Cycloserine Increases the Susceptibility of MRSA to beta-lactam Antibiotics
  • 2020
  • Ingår i: Journal of Infectious Diseases. - : OXFORD UNIV PRESS INC. - 0022-1899 .- 1537-6613. ; 221:6, s. 1006-1016
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolonging the clinical effectiveness of beta-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted D-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to beta-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and D-alanine ligase required for D-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal D-ala-D-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between beta-lactams and DCS. DCS resensitized MRSA to beta-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to beta-lactam antibiotics.
  •  
3.
  • Amon, Jeremy D., et al. (författare)
  • SwsB and SafA Are Required for CwlJ-Dependent Spore Germination in Bacillus subtilis
  • 2020
  • Ingår i: Journal of Bacteriology. - : American Society for Microbiology. - 0021-9193 .- 1098-5530. ; 202:6
  • Tidskriftsartikel (refereegranskat)abstract
    • When Bacillus subtilis spores detect nutrients, they exit dormancy through the processes of germination and outgrowth. A key step in germination is the activation of two functionally redundant cell wall hydrolases (SleB and CwlJ) that degrade the specialized cortex peptidoglycan that surrounds the spore. How these enzymes are regulated remains poorly understood. To identify additional factors that affect their activity, we used transposon sequencing to screen for synthetic germination defects in spores lacking SleB or CwlJ. Other than the previously characterized protein YpeB, no additional factors were found to be specifically required for SleB activity. In contrast, our screen identified SafA and YlxY (renamed SwsB) in addition to the known factors GerQ and CotE as proteins required for CwlJ function. SafA is a member of the spore's proteinaceous coat and we show that, like GerQ and CotE, it is required for accumulation and retention of CwlJ in the dormant spore. SwsB is broadly conserved among spore formers, and we show that it is required for CwlJ to efficiently degrade the cortex during germination. Intriguingly, SwsB resembles polysaccharide deacetylases, and its putative catalytic residues are required for its role in germination. However, we find no chemical signature of its activity on the spore cortex or in vitro. While the precise, mechanistic role of SwsB remains unknown, we explore and discuss potential activities. IMPORTANCE Spore formation in Bacillus subtilis has been studied for over half a century, and virtually every step in this developmental process has been characterized in molecular detail. In contrast, how spores exit dormancy remains less well understood. A key step in germination is the degradation of the specialized cell wall surrounding the spore called the cortex. Two enzymes (SleB and CwlJ) specifically target this protective layer, but how they are regulated and whether additional factors promote their activity are unknown. Here, we identified the coat protein SafA and a conserved but uncharacterized protein YlxY as additional factors required for CwlJ-dependent degradation of the cortex. Our analysis provides a more complete picture of this essential step in the exit from dormancy.
  •  
4.
  • Figueroa-Cuilan, Wanda M., et al. (författare)
  • Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens
  • 2022
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 88:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 DmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
  •  
5.
  • Gilmore, Michael C., et al. (författare)
  • A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens
  • 2024
  • Ingår i: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 300:2
  • Tidskriftsartikel (refereegranskat)abstract
    • During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
  •  
6.
  • Jacquier, Nicolas, et al. (författare)
  • A SpoIID Homolog Cleaves Glycan Strands at the Chlamydial Division Septum
  • 2019
  • Ingår i: mBio. - : American Society for Microbiology (ASM). - 2161-2129 .- 2150-7511. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlamydiales species are obligate intracellular bacteria lacking a classical peptidoglycan sacculus but relying on peptidoglycan synthesis for cytokinesis. While septal peptidoglycan biosynthesis seems to be regulated by MreB actin and its membrane anchor RodZ rather than FtsZ tubulin in Chlamydiales, the mechanism of peptidoglycan remodeling is poorly understood. An amidase conserved in Chlamydiales is able to cleave peptide stems in peptidoglycan, but it is not clear how peptidoglycan glycan strands are cleaved since no classical lytic transglycosylase is encoded in chlamydial genomes. However, a protein containing a SpoIID domain, known to possess transglycosylase activity in Bacillus subtilis, is conserved in Chiamydiales. We show here that the SpoIID homologue of the Chlamydia-related pathogen Waddlia chondrophila is a septal peptidoglycan-binding protein. Moreover, we demonstrate that SpoIID acts as a lytic transglycosylase on peptidoglycan and as a muramidase on denuded glycan strands in vitro. As SpoIID-like proteins are widespread in nonsporulating bacteria, SpoIID might commonly be a septal peptidoglycan remodeling protein in bacteria, including obligate intracellular pathogens, and thus might represent a promising drug target. IMPORTANCE Chlamydiales species are obligate intracellular bacteria and important human pathogens that have a minimal division machinery lacking the proteins that are essential for bacterial division in other species, such as FtsZ. Chlamydial division requires synthesis of peptidoglycan, which forms a ring at the division septum and is rapidly turned over. However, little is known of peptidoglycan degradation, because many peptidoglycan-degrading enzymes are not encoded by chlamydial genomes. Here we show that an homologue of SpoIID, a peptidoglycan-degrading enzyme involved in sporulation of bacteria such as Bacillus subtilis, is expressed in Chlamydiales, localizes at the division septum, and degrades peptidoglycan in vitro, indicating that SpoIID is not only involved in sporulation but also likely implicated in division of some bacteria.
  •  
7.
  • Yadav, Akhilesh K., et al. (författare)
  • Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 9
  • Forskningsöversikt (refereegranskat)abstract
    • Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy