SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yadav Pooja) "

Sökning: WFRF:(Yadav Pooja)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carvalho, Ricardo L., et al. (författare)
  • Bioenergy strategies to address deforestation and household air pollution in western Kenya
  • 2019
  • Ingår i: European Biomass Conference and Exhibition Proceedings. - : ETA-Florence Renewable Energies. ; , s. 1536-1542
  • Konferensbidrag (refereegranskat)abstract
    • Over 640 million people in Africa are expected to rely on solid-fuels for cooking by 2040. In Western Kenya, cooking inefficiently persists as a major cause of burden disease due to household air pollution. The Long-Range Energy Alternatives Planning (LEAP) system and the Life-Cycle Assessment tool Simapro 8.5 were applied for analyzing biomass strategies for the region. The calculation of the residential energy consumption and emissions was based on scientific reviews and original data from experimental studies. The research shows the effect of four biomass strategies on the reduction of wood fuel use and short-lived climate pollutant emissions. A Business As Usual scenario (BAU) considered the trends in energy use until 2035. Transition scenarios to Improved Cookstoves (ICS), Pellet-fired Gasifier Stoves (PGS) and Biogas Stoves (BGS) considered the transition to wood-logs, biomass pellets and biogas, respectively. An Integrated (INT) scenario evaluated a mix of the ICS, PGS and BGS. The study shows that, energy use will increase by 8% (BGS), 20% (INT), 26% (PGS), 42% (ICS) and 56% (BAU). The BGS has the lowest impact on global warming, particle formation, terrestrial acidification, fossil resource scarcity, water consumption, as well as on eutrophication followed by the PGS and INT.
  •  
2.
  • Carvalho, Ricardo Luís, et al. (författare)
  • Environmental Sustainability of Bioenergy Strategies in Western Kenya to Address Household Air Pollution
  • 2020
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 13:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Over 640 million people in Africa are expected to rely on solid-fuels for cooking by 2040. In Western Kenya, cooking inefficiently persists as a major cause of burden of disease due to household air pollution. Efficient biomass cooking is a local-based renewable energy solution to address this issue. The Life-Cycle Assessment tool Simapro 8.5 is applied for analyzing the environmental impact of four biomass cooking strategies for the Kisumu County, with analysis based on a previous energy modelling study, and literature and background data from the Ecoinvent and Agrifootprint databases applied to the region. A Business-As-Usual scenario (BAU) considers the trends in energy use until 2035. Transition scenarios to Improved Cookstoves (ICS), Pellet-fired Gasifier Stoves (PGS) and Biogas Stoves (BGS) consider the transition to wood-logs, biomass pellets and biogas, respectively. An Integrated (INT) scenario evaluates a mix of the ICS, PGS and BGS. In the BGS, the available biomass waste is sufficient to be upcycled and fulfill cooking demands by 2035. This scenario has the lowest impact on all impact categories analyzed followed by the PGS and INT. Further work should address a detailed socio-economic analysis of the analyzed scenarios.
  •  
3.
  • Gupta, Surbhi, et al. (författare)
  • Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary tract infections (UTI) are the most common infectious diseases in the world. It is becoming increasingly tough to treat because of emergence of antibiotic resistance. So, there is an exigency to develop novel anti-virulence therapeutics to combat multi-drug resistance pathogenic strains. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) discovery has revolutionized the gene editing technology for targeted approach. The greatest obstacle for CRISPR/Cas9 is cargo delivery systems and both viral and plasmid methods have disadvantages. Here, we report a highly efficient novel CRISPR based gene editing strategy, CRISPR-dots for targeting virulence factor Fimbrial Adhesion (papG gene), the bacterial adhesion molecule. Carbon quantum dots (CQD) were used as a delivery vehicle for Cas9 and gRNA into CFT073, a UPEC strain. CQDs were covalently conjugated to cas9 and papG-targeted guide RNA (gRNA) forming a nanocomplex CRISPR-dots (Cri-dots) as confirmed by DLS and transmission electron microscopy. Cri-dots-papG significantly targeted papG as demonstrated by decrease in the expression of papG.Further papG deficient UPEC had significantly reduced adherence ability and biofilm forming ability as demonstrated by fluorescence microscopy and scanning electron microscopy. Also, papG deficient UPEC had reduced virulence as shown by significantly increased survival of Caenorhabditis elegans (C. elegans) worms compared to UPEC. Our findings suggest that targeting of papG gene using Cri-dots nanocomplexes significantly reduced the pathogenicity of UPEC. Thus, Cri-dots nanocomplex offer a novel anti-bacterial strategy against multi-drug resistant UPEC.
  •  
4.
  • Kumar, Pravin, et al. (författare)
  • Phylogenomic evaluation of Mangrovimicrobium sediminis gen. nov. sp. nov., the first nitrogen fixing member of the family Halieaceae adapted to mangrove habitat and reclassification of Halioglobus pacificus to Pseudohaliglobus pacificus comb. nov.
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 933
  • Tidskriftsartikel (refereegranskat)abstract
    • The taxonomic position and genomic characteristics of a nitrogen fixing and polymer degrading marine bacterium, strain SAOS 164 isolated from a mangrove sediment sample was investigated. Sequence analysis based on 16S rRNA gene identified it as a member of family Halieaceae with closest similarity to Haliea salexigens DSM 19537T (96.3 %), H. alexandrii LZ-16-2T (96.2 %) and Parahaliea maris HSLHS9T (96.0 %) but was distantly related to the genera Haliea, Parahaliea and Halioglobus in phylogenetic trees. In order to ascertain the exact taxonomic position, phylogeny based on RpoBC proteins, whole genome, core and orthologous genes, and comparative analysis of metabolic potential retrieved the strain in an independent lineage clustering along with the genera Halioglobus, Pseudohalioglobus and Seongchinamella. Further, various genome based delimitation parameters represented by mol % GC content, percentage of conserved proteins (POCP), and amino acid identity (AAI) along with chemotaxonomic markers (i.e. fatty acids and polar lipids) supported the inferences of genome based phylogeny and indicated that the strain SAOS 164 belongs to a novel genus. The genome was mapped to 4.8 Mb in size with 65.1 % DNA mol% G + C content. In-silico genomic investigation and phenotyping revealed diverse metabolite genes/pathways related to polymer hydrolysis, nitrogen fixation, light induced growth, carbohydrate, sulfur, phosphorus and amino acid metabolism, virulence factors, defense mechanism, and stress-responsive elements facilitating survival in the mangrove habitat. Based on polyphasic taxonomic approach including genome analyses, a novel genus Mangrovimicrobium sediminis gen. nov. sp. nov. (=SAOS 164T = MTCC 12907T = KCTC 52755T = JCM 32136T) is proposed. Additionally, the reclassification of Halioglobus pacificus (=DSM 27932T = KCTC 23430T = S1–72T) to Pseudhalioglobus pacificus comb. nov. is also proposed.
  •  
5.
  • Shanmugam, Kavitha, et al. (författare)
  • Advanced High-Strength Steel and Carbon Fiber Reinforced Polymer Composite Body in White for Passenger Cars : Environmental Performance and Sustainable Return on Investment under Different Propulsion Modes
  • 2019
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 7:5, s. 4951-4963
  • Tidskriftsartikel (refereegranskat)abstract
    • Vehicle lightweighting strategies must deliver sustainable returns to customers and society. This work evaluates the sustainable return on investment (SROI) of lightweighted advanced high strength steel (AHSS) and carbon fiber reinforced polymer (CFRP)-intensive multimaterial bodies in white (BIWs) for automobiles. The SROI depends on the lightweighted BIW's manufacturing cost and the difference in sustainable cost between a baseline (mild steel) BIW and the lightweighted alternative. The sustainable cost is the sum of the customer's lifetime fuel (or electricity) costs and the costs of environmental externalities. A cradle-to-grave life cycle assessment (LCA) was conducted to quantify the environmental impacts of CFRP and AHSS BIWs in gasoline-fueled cars, bioethanol (E85)-fueled cars, and battery electric vehicles (BEVs) driven for a lifetime distance of 200 000 km. For cars fueled with gasoline- or corn-based bioethanol, the CFRP BIW yielded the lowest SROI; the AHSS BIW performed best for BEVs and cars fueled with wood bioethanol. However, the commercial availability of recycled carbon fiber should increase the SROI of the CFRP BIW in the future. Additionally, the SROI of CFRP BIWs is maximized when carbon fiber production is done using energy from a low carbon-intensity electric grid or decentralized sources such as waste-to-energy incineration plants.
  •  
6.
  • Yacout, Dalia, et al. (författare)
  • An evaluation of different climate matrices used in biomass energy research
  • 2020
  • Ingår i: Current developments in biotechnology and bioengineering. - Amsterdam : Elsevier. - 9780444643094 - 9780444643100 ; , s. 179-204
  • Bokkapitel (refereegranskat)abstract
    • Renewable energy production from biomass sources and related bio-based economy is gaining more and more attention nowadays. Research related to biomass and bio-based fuels is an important part of the strategic agenda of many countries in Europe and Asia. Furthermore, upscaling investigation in the area is undergoing in many other countries around the globe like United States, China, and India. The expansion of the biofuels usage raises concerns related to their production sustainability, including several environmental, economic, and social aspects. The aim of this chapter is to present in detail the evaluation of different climate matrices used in global biomass energy research. A strategic framework for production of biofuels and their utilization is also presented. This strategic framework merges the different environmental indicators and conversion technologies in order to achieve a sustainable circular bio-based economy.
  •  
7.
  • Yadav, Pooja, et al. (författare)
  • Assessment of the environmental impact of polymeric membrane production
  • 2021
  • Ingår i: Journal of Membrane Science. - : Elsevier. - 0376-7388 .- 1873-3123. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymeric membranes are important in advanced separation technologies because of their high efficiency and low environmental impact. However, procedures for membrane production are far from sustainable and environmentally friendly. This work presents a life cycle assessment of the environmental impact of fabricating 1000 m2 of hollow fiber polymeric membranes. Membrane materials considered include the most popular fossil- and bio-based polymers in current use, i.e., polysulfones, polyvinylidene fluoride, and cellulose acetate. Solvents considered for use in polymer dope solution included polar aprotic solvents (N-Methyl-2-pyrrolidone, N, N-dimethylacetamide, and dimethylformamide) that are widely used in industry and an alternative green solvent (ethylene carbonate). The impacts of membrane production on global warming, marine ecotoxicity, human carcinogenic and non-carcinogenic toxicity, land use potential, and fossil resource scarcity were analyzed. Additionally, the impact on the sustainability and environmental cost of membrane production resulting from replacing fossil-based polymers with bio-based polymers or substituting toxic solvents with a green alternative was investigated. Hot spots in the membrane production process were identified, and measures to reduce the environmental impact of membrane production were proposed.
  •  
8.
  • Yadav, Pooja, et al. (författare)
  • Environmental impact and cost assessment of a novel lignin production method
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • The oil scarcity and the rise in earth temperature have elevated the interest in lignocellulosic biorefineries. Lignin has high potential to be used in various applications including the production of biomaterials and transportation fuels. Among the different sources of lignin, organosolv lignin has the advantage of being sulphur-free and of low ash content compared to other types of industrial lignin. The present study focuses on cradle-to-gate life cycle and cost assessment of a novel organosolv lignin production process from spruce bark. The system boundary included production of tannin, lignin from spruce bark and handling of waste including all the inputs (material and energy) and outputs (emissions) in the process. Baseline scenario and scenarios S1 and S2 were compared to identify the most environmentally and economically suitable scenario. The baseline scenario is lignin production with co-production of tannin and tannin free bark (TFB) from spruce bark; scenario S1 is lignin production from TFB; and scenario S2 is lignin production from TFB with mass allocation. The functional unit was 1 kg lignin produced and ReCiPe 2016 Midpoint (H) method was used for the environmental impact assessment. The results showed that the baseline scenario had higher global warming potential (GWP) (2.14 kg CO(2)eq.) and total cost (1.959 (sic)/kg) than S1 (1.39 kg CO2 eq. and 1.377 (sic)/kg respectively) and S2 (0.23 kg CO(2)eq. and 0.998 (sic)/kg respectively) scenarios. The results of sensitivity analysis showed that the use of bioethanol instead of ethanol reduced the burden on GWP but increased the burden on the land use impact category.
  •  
9.
  • Yadav, Pooja, et al. (författare)
  • Environmental Impact and Environmental Cost Assessment of a Novel Lignin Production Method
  • 2021
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • The oil scarcity and the rise in earth temperature have elevated the interest in lignocellulosic biorefineries. Lignin has high potential to be used in various applications including the production of biomaterials and transportation fuels. Among the different sources of lignin, organosolv lignin has the advantage of being sulphur-free and of low ash content compared to other types of industrial lignin. The present study focuses on cradle-to-gate life cycle and cost assessment of a novel organosolv lignin production process from spruce bark. The system boundary included production of tannin, lignin from spruce bark and handling of waste including all the inputs (material and energy) and outputs (emissions) in the process. Baseline scenario and scenarios S1 and S2 were compared to identify the most environmentally and economically suitable scenario. The baseline scenario is lignin production with co-production of tannin and tannin free bark (TFB) from spruce bark; scenario S1 is lignin production from TFB; and scenario S2 is lignin production from TFB with mass allocation. The functional unit was 1 kg lignin produced and ReCiPe 2016 Midpoint (H) method was used for the environmental impact assessment. The results showed that the baseline scenario had higher global warming potential (GWP) (2.14 kg CO2eq.) and total cost (1.959 €/kg) than S1 (1.39 kg CO2 eq. and 1.377 €/kg respectively) and S2 (0.23 kg CO2eq. and 0.998 €/kg respectively) scenarios. The results of sensitivity analysis showed that the use of bioethanol instead of ethanol reduced the burden on GWP but increased the burden on the land use impact category.
  •  
10.
  • Yadav, Pooja, et al. (författare)
  • Environmental Impact and Environmental Cost Assessment of Methanol Production from wood biomass
  • 2020
  • Ingår i: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 265:Part A
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing demand for biofuel production and global competition for the use of natural resources are key factors in finding new and environmentally safe routes for methanol production. In the present study, life cycle assessment was used to analyse the potential environmental impact and environmental cost of a novel methanol production process from wood compared to a conventional processes. Both the novel and the conventional process were divided into three stages: pre-treatment, gasification, and syngas cleaning and methanol synthesis. The environmental impacts were assessed and compared using Simapro 9 (ecoinvent 3.5 database) and the ReCiPe 2016 (World-H) midpoint method. The results, expressed per tonne methanol, showed that the impact categories of global warming potential (GWP) and marine ecotoxicity potential were lower in the novel process in comparison to the conventional process (48.2 kg CO2 eq. vs. 63.1 kg CO2 eq., and 4.55 kg 1,4-DCB vs. 6.35 kg 1,4-DCB respectively). However, the novel process had a higher environmental impact in the pre-treatment stage. The results of the sensitivity analysis showed that the GWP of the novel process increased from 48.2 kg CO2 eq. to 216 kg CO2 eq. due to the replacement of Na2CO3 by K2CO3. The human toxicity impact categories showed significant impact on environmental cost. These findings will help relevant industries to reduce their environmental impact and improve the production efficiency of methanol from wood.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy