SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yahara Tetsukazu) "

Sökning: WFRF:(Yahara Tetsukazu)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davies, Neil, et al. (författare)
  • The founding charter of the Genomic Observatories Network
  • 2014
  • Ingår i: GigaScience. - 2047-217X. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.
  •  
2.
  • Diaz, Sandra, et al. (författare)
  • The IPBES Conceptual Framework - connecting nature and people
  • 2015
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435 .- 1877-3443. ; 14, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework. This conceptual and analytical tool, presented here in detail, will underpin all IPBES functions and provide structure and comparability to the syntheses that IPBES will produce at different spatial scales, on different themes, and in different regions. Salient innovative aspects of the IPBES Conceptual Framework are its transparent and participatory construction process and its explicit consideration of diverse scientific disciplines, stakeholders, and knowledge systems, including indigenous and local knowledge. Because the focus on co-construction of integrative knowledge is shared by an increasing number of initiatives worldwide, this framework should be useful beyond IPBES, for the wider research and knowledge-policy communities working on the links between nature and people, such as natural, social and engineering scientists, policy-makers at different levels, and decision-makers in different sectors of society.
  •  
3.
  • Larigauderie, Anne, et al. (författare)
  • Biodiversity and ecosystem services science for a sustainable planet : the DIVERSITAS vision for 2012-20
  • 2012
  • Ingår i: Current Opinion in Environmental Sustainability. - : Elsevier BV. - 1877-3435 .- 1877-3443. ; 4:1, s. 101-105
  • Tidskriftsartikel (refereegranskat)abstract
    • DIVERSITAS, the international programme on biodiversity science, is releasing a strategic vision presenting scientific challenges for the next decade of research on biodiversity and ecosystem services: Biodiversity and Ecosystem Services Science for a Sustainable Planet. This new vision is a response of the biodiversity and ecosystem services scientific community to the accelerating loss of the components of biodiversity, as well as to changes in the biodiversity science-policy landscape (establishment of a Biodiversity Observing Network - GEO BON, of an Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services - IPBES, of the new Future Earth initiative; and release of the Strategic Plan for Biodiversity 2011-2020). This article presents the vision and its core scientific challenges.
  •  
4.
  • Mimura, Makiko, et al. (författare)
  • Range shift and introgression of the rear and leading populations in two ecologically distinct Rubus species
  • 2014
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 14, s. 209-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The margins of a species' range might be located at the margins of a species' niche, and in such cases, can be highly vulnerable to climate changes. They, however, may also undergo significant evolutionary changes due to drastic population dynamics in response to climate changes, which may increase the chances of isolation and contact among species. Such species interactions induced by climate changes could then regulate or facilitate further responses to climatic changes. We hypothesized that climate changes lead to species contacts and subsequent genetic exchanges due to differences in population dynamics at the species boundaries. We sampled two closely related Rubus species, one temperate (Rubus palmatus) and the other subtropical (R. grayanus) near their joint species boundaries in southern Japan. Coalescent analysis, based on molecular data and ecological niche modelling during the Last Glacial Maximum (LGM), were used to infer past population dynamics. At the contact zones on Yakushima (Yaku Island), where the two species are parapatrically distributed, we tested hybridization along altitudinal gradients. Results: Coalescent analysis suggested that the southernmost populations of R. palmatus predated the LGM (similar to 20,000 ya). Conversely, populations at the current northern limit of R. grayanus diverged relatively recently and likely represent young outposts of a northbound range shift. These population dynamics were partly supported by the ensemble forecasting of six different species distribution models. Both past and ongoing hybridizations were detected near and on Yakushima. Backcrosses and advanced-generation hybrids likely generated the clinal hybrid zones along altitudinal gradients on the island where the two species are currently parapatrically distributed. Conclusions: Climate oscillations during the Quaternary Period and the response of a species in range shifts likely led to repeated contacts with the gene pools of ecologically distinct relatives. Such species interactions, induced by climate changes, may bring new genetic material to the marginal populations where species tend to experience more extreme climatic conditions at the margins of the species distribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy