SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yan Xiaodan) "

Sökning: WFRF:(Yan Xiaodan)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dely, H., et al. (författare)
  • High bitrate data transmission in the 8-14 µm atmospheric window using an external Stark-effect modulator with digital equalization
  • 2023
  • Ingår i: Optics Express. - : Optica Publishing Group (formerly OSA). - 1094-4087. ; 31:5, s. 7259-7264
  • Tidskriftsartikel (refereegranskat)abstract
    • High bitrate mid-infrared links using simple (NRZ) and multi-level (PAM-4) data coding schemes have been realized in the 8 µm to 14 µm atmospheric transparency window. The free space optics system is composed of unipolar quantum optoelectronic devices, namely a continuous wave quantum cascade laser, an external Stark-effect modulator and a quantum cascade detector, all operating at room-temperature. Pre- and post-processing are implemented to get enhanced bitrates, especially for PAM-4 where inter-symbol interference and noise are particularly detrimental to symbol demodulation. By exploiting these equalization procedures, our system, with a full frequency cutoff of 2 GHz, has reached transmission bitrates of 12 Gbit/s NRZ and 11 Gbit/s PAM-4 fulfilling the 6.25 % overhead hard-decision forward error correction threshold, limited only by the low signal-to-noise ratio of our detector. 
  •  
2.
  • Gong, Y., et al. (författare)
  • Photovoltaic Output Potential Assessment via Transformer-based Solar Forecasting and Rooftop Segmentation Methods
  • 2023
  • Ingår i: Energy Proceedings. - : Scanditale AB.
  • Konferensbidrag (refereegranskat)abstract
    • Given the escalating carbon emission crisis, there is an urgent need for large-scale adoption of renewable energy generation to replace traditional fossil fuelbased energy generation for a smooth energy transition. In this regard, distributed photovoltaic power generation plays a crucial role. Predicting the GHI in advance to predict the power of photovoltaic power generation has become one of the methods to solve the grid-connected stability in recent years, which enables the grid staff to dispatch and plan in advance through the forecast results, reduce fluctuations, and maintain grid stability. In this study, we present a deep learningbased method to assess photovoltaic output potential by solar irradiance forecasting and rooftop segmentation. First, we utilize a multivariate input Transformer model that incorporates various data to predict GHI; Second, using remote sensing images to train Swin-Transformer to identify the potential area of rooftop photovoltaic panel; Finally, the potential assessment was achieved by calculating the array output through the GHI and area data we generated in the first two parts. Our evaluation methodology and results provide technical support for the transition of energy structure.
  •  
3.
  • Han, Mengyao, et al. (författare)
  • High Spectral Efficiency Long-wave Infrared Free-Space Optical Transmission with Multilevel Signals
  • 2023
  • Ingår i: Journal of Lightwave Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0733-8724 .- 1558-2213. ; 41:20, s. 6514-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the potential of long-wave infrared free-space optical (FSO) transmission that leverages multilevel signals to attain high spectral efficiency. The FSO transmission system consists of a directly modulated-quantum cascade laser (DM-QCL) operating at 9.15 μm and a mercury cadmium telluride (MCT) detector. To fully understand the system, we conduct measurements on the DM-QCL chip and MCT detector and assess the overall amplitude response of the DM-QCL, MCT detector, and all electrical components. We apply various signals, including on-off keying (OOK), 4-level pulse amplitude modulation (PAM4), 6-level PAM (PAM6), and 8-level PAM (PAM8) to maximize the bit rate and spectral efficiency of the FSO transmission. Through a two-dimensional sweeping of the laser bias current and MCT detector photovoltage, we optimize the transmission performance. At the optimal operation point, the FSO system achieved impressive results which are up to 6 Gbaud OOK, 3.5 Gbaud PAM4, 3 Gbaud PAM6, and 2.7 Gbaud PAM8 signal transmissions, with a bit error rate performance below 6.25% overhead hard decision-forward error correction limit when the DM-QCL operates at 10 °C. We also evaluate the eye diagrams and stability of the system to showcase its remarkable transmission performance. Our findings suggest that the DMQCL and MCT detector-based FSO transceivers offer a highly competitive solution for the next generation of optical wireless communication systems
  •  
4.
  • Han, Mengyao, et al. (författare)
  • High Spectral Efficiency Long-Wave Infrared Free-Space Optical Transmission With Multilevel Signals
  • 2023
  • Ingår i: Journal of Lightwave Technology. - : Institute of Electrical and Electronics Engineers (IEEE). - 0733-8724 .- 1558-2213. ; 41:20, s. 6514-6520
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the potential of long-wave infrared free-space optical (FSO) transmission that leverages multilevel signals to attain high spectral efficiency. The FSO transmission system consists of a directly modulated-quantum cascade laser (DM-QCL) operating at 9.15 mu m and a mercury cadmium telluride (MCT) detector. To fully understand the system, we conduct measurements on the DM-QCL chip and MCT detector and assess the overall amplitude response of the DM-QCL, MCT detector, and all electrical components. We apply various signals, including on-off keying (OOK), 4-level pulse amplitude modulation (PAM4), 6-level PAM (PAM6), and 8-level PAM (PAM8) to maximize the bit rate and spectral efficiency of the FSO transmission. Through a two-dimensional sweeping of the laser bias current and MCT detector photovoltage, we optimize the transmission performance. At the optimal operation point, the FSO system achieved impressive results which are up to 6 Gbaud OOK, 3.5 Gbaud PAM4, 3 Gbaud PAM6, and 2.7 Gbaud PAM8 signal transmissions, with a bit error rate performance below 6.25% overhead hard decision-forward error correction limit when the DM-QCL operates at 10 degrees C. We also evaluate the eye diagrams and stability of the system to showcase its remarkable transmission performance. Our findings suggest that the DM-QCL and MCT detector-based FSO transceivers offer a highly competitive solution for the next generation of optical wireless communication systems.
  •  
5.
  • Han, Mengyao, et al. (författare)
  • Long-Wave Infrared Discrete Multitone Free-Space Transmission Using a 9.15-μm Quantum Cascade Laser
  • 2023
  • Ingår i: IEEE Photonics Technology Letters. - : Institute of Electrical and Electronics Engineers Inc.. - 1041-1135 .- 1941-0174. ; 35:9, s. 489-492
  • Tidskriftsartikel (refereegranskat)abstract
    • A free-space optical (FSO) transmission system is experimentally demonstrated in the long-wave infrared (LWIR, 9.15μ m ) using a directly modulated quantum cascade laser (DM-QCL) and a commercial mercury-cadmium-telluride infrared photovoltaic detector. At room temperature, the DM-QCL is current-modulated by discrete multitone signals pre-processed with bit-/power-loading. Up to 5.1 Gbit/s data rate is achieved with bit error rate performance below the 6.25% overhead hard-decision forward error correction limit of 4.5× 10-3 , enabled by a frequency domain equalizer. The stability study of the FSO system is also performed at multiple temperature values. This study can provide a valuable reference for future terrestrial and space communications. 
  •  
6.
  • Joharifar, Mahdieh, et al. (författare)
  • 16.9 Gb/s Single-Channel LWIR FSO Data Transmission with Directly Modulated QCL and MCT Detector
  • 2024
  • Ingår i: 2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings. - : Institute of Electrical and Electronics Engineers Inc..
  • Konferensbidrag (refereegranskat)abstract
    • We experimentally demonstrate a room-temperature LWIR FSO link with a 9.1-μm directly modulated QCL and an MCT detector. Net bitrate of up to 16.9 Gb/s is achieved at both 15°C and 20°C over a 1-meter distance.
  •  
7.
  • Joharifar, Mahdieh, et al. (författare)
  • 16.9 Gb/s Single-Channel LWIR FSO Data Transmission with Directly Modulated QCL and MCT Detector
  • 2024
  • Ingår i: <em>2024 Optical Fiber Communications Conference and Exhibition, OFC 2024 - Proceedings</em>. - : Institute of Electrical and Electronics Engineers Inc.. - 9781957171326
  • Konferensbidrag (refereegranskat)abstract
    • We experimentally demonstrate a room-temperature LWIR FSO link with a 9.1-μm directly modulated QCL and an MCT detector. Net bitrate of up to 16.9 Gb/s is achieved at both 15°C and 20°C over a 1-meter distance. 
  •  
8.
  •  
9.
  • Joharifar, Mahdieh, et al. (författare)
  • High-Speed 9.6-μm Long-Wave Infrared Free- Space Transmission with a Directly-Modulated QCL and a Fully-Passive QCD
  • 2023
  • Ingår i: Journal of Lightwave Technology. - : Institute of Electrical and Electronics Engineers Inc.. - 0733-8724 .- 1558-2213. ; 41:4, s. 1087-
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-space optics (FSO) in the mid-infrared (mid- IR) contains rich spectral resources for future ultrahigh-speed wireless communications yet is currently under-exploited. Two atmospheric transmission windows at the mid-IR, namely, the mid-wave IR (MWIR, 3-5 µm) and the long-wave IR (LWIR, 8-12 µm), show great potential in supporting free-space communications for both terrestrial and space application scenarios. Particularly, the LWIR signal with a longer wavelength has high intrinsic robustness against aerosols' scattering and turbulence-induced scintillation and beam broadening effects, which are the main concerns hindering the wide deployment of practical FSO systems. In this context, high-bandwidth semiconductor-based mid-IR FSO transceivers will be desirable to meet the requirements of low energy consumption and small footprints for large-volume development and deployment. Quantum cascade devices, including quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), appear promising candidates to fulfill this role. In this work, we report a high-speed LWIR FSO transmission demonstration with a 9.6-µm directly-modulated (DM)-QCL and a fully passive QCD without any active cooling or bias voltage. Up to 8 Gb/s, 10 Gb/s, and 11 Gb/s signal transmissions are achieved when operating the DM- QCL at 10°C, 5°C, and 0°C, respectively. These results indicate a significant step towards an envisioned fully-connected mid-IR FSO solution empowered by the quantum cascade semiconductor devices.
  •  
10.
  • Li, Hailong, 1976-, et al. (författare)
  • A self-powered smart wave energy converter for sustainable sea
  • 2024
  • Ingår i: Mechanical systems and signal processing. - : Academic Press. - 0888-3270 .- 1096-1216. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-powered smart buoys are widely used in sustainable sea, such as marine environmental monitoring. The article designs a self-powered and self-sensing point-absorber wave energy converter based on the two-arm mechanism. The system consists of the wave energy capture module, the power take-off module, the generator module and the energy storage module. As the core component of the wave energy converter, the power take-off module is mainly composed of a two-arm mechanism, which can convert the oscillation heave motion into unidirectional rotary motion. To evaluate the power generation performance of the system, the kinematic and dynamic models of the wave energy converter with the flywheel are established, and the disengagement and engagement phenomena of the flywheel are analyzed. The effectiveness of the prototype in capturing wave energy is verified through dry experiments in lab and field tests. The dry experiment reveals that the maximum output power of the system is 5.67 W, and the maximum and average mechanical efficiency are 66.63 % and 48.35 %, respectively. Additionally, the field test demonstrates that the peak output power can reach 92 W. Meanwhile, the generated electrical signals can be processed by deep learning algorithms to accurately identify different wave states. This high performance confirms that the proposed wave energy converter can meet its own energy needs by capturing wave energy in the marine environment, while also achieving self-sensing for wave condition monitoring. The system has great potential for promoting the development of intelligent sustainable sea in the future. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy