SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Luming) "

Sökning: WFRF:(Yang Luming)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dou, Jin-Hu, et al. (författare)
  • Atomically precise single-crystal structures of electrically conducting 2D metal-organic frameworks
  • 2021
  • Ingår i: Nature Materials. - : Springer Science and Business Media LLC. - 1476-1122 .- 1476-4660. ; 20, s. 222-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D pi-conjugated MOFs derived from large single crystals of sizes up to 200 mu m, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the pi-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 mu m are grown, allowing in-plane transport measurements and atomic-resolution analysis.
  •  
2.
  • Wang, Zhengyan, et al. (författare)
  • Dialing in Catalytic Sites on Metal Organic Framework Nodes : MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:47, s. 53537-53546
  • Tidskriftsartikel (refereegranskat)abstract
    • Many metal organic frameworks (MOFs) incorporate metal oxide clusters as nodes. Node sites where linkers are missing can be catalytic sites. We now show how to dial in the number and occupancy of such sites in MIL-53 and MIL-68, which incorporate aluminum-oxide-like nodes. The methods involve modulators used in synthesis and postsynthesis reactions to control the modulator-derived groups on these sites. We illustrate the methods using formic acid as a modulator, giving formate ligands on the sites, and these can be removed to leave μ2-OH groups and open Lewis acid sites. Methanol dehydration was used as a catalytic reaction to probe these sites, with infrared spectra giving evidence of methoxide ligands as reaction intermediates. Control of node surface chemistry opens the door for placement of a variety of ligands on a wide range of metal oxide cluster nodes for dialing in reactivity and catalytic properties of a potentially immense class of structurally well-defined materials.
  •  
3.
  • Chen, Tianyang, et al. (författare)
  • Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:12, s. 5583-5593
  • Tidskriftsartikel (refereegranskat)abstract
    • We reveal here the construction of Ni-based metal-organic frameworks (MOFs) and conjugated coordination polymers (CCPs) with different structural dimensionalities, including closely pi-stacked 1D chains (Ni-1D), aggregated 2D layers (Ni-2D), and a 3D framework (Ni-3D), based on 2,3,5,6-tetraamino-1,4-hydroquinone (TAHQ) and its various oxidized forms. These materials have the same metal-ligand composition but exhibit distinct electronic properties caused by different dimensionalities and supramolecular interactions between SBUs, ligands, and structural motifs. The electrical conductivity of these materials spans nearly 8 orders of magnitude, approaching 0.3 S/cm.
  •  
4.
  • Chen, Tianyang, et al. (författare)
  • High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics
  • 2023
  • Ingår i: Joule. - : Elsevier BV. - 2542-4351. ; 7:5, s. 986-1002
  • Tidskriftsartikel (refereegranskat)abstract
    • Designing materials for electrochemical energy storage with short charging times and high charge capacities is a longstanding challenge. The fundamental difficulty lies in incorporating a high density of redox couples into a stable material that can efficiently conduct both ions and electrons. We report all-organic, fused aromatic materials that store up to 310 mAh g−1 and charge in as little as 33 s. This performance stems from abundant quinone/imine functionalities that decorate an extended aromatic backbone, act as redox-active sites, engage in hydrogen bonding, and enable a delocalized high-rate energy storage with stability upon cycling. The extended conjugation and hydrogen-bonding-assisted bulk charge storage contrast with the surface-confined or hydration-dependent behavior of traditional inorganic electrodes.
  •  
5.
  • Wang, Ruoli, et al. (författare)
  • Passive Mechanical Properties of Human Medial Gastrocnemius and Soleus Musculotendinous Unit.
  • 2021
  • Ingår i: BioMed Research International. - : Hindawi Publishing Corporation. - 2314-6133 .- 2314-6141. ; 2021
  • Tidskriftsartikel (refereegranskat)abstract
    • The in vivo characterization of the passive mechanical properties of the human triceps surae musculotendinous unit is important for gaining a deeper understanding of the interactive responses of the tendon and muscle tissues to loading during passive stretching. This study sought to quantify a comprehensive set of passive muscle-tendon properties such as slack length, stiffness, and the stress-strain relationship using a combination of ultrasound imaging and a three-dimensional motion capture system in healthy adults. By measuring tendon length, the cross-section areas of the Achilles tendon subcompartments (i.e., medial gastrocnemius and soleus aspects), and the ankle torque simultaneously, the mechanical properties of each individual compartment can be specifically identified. We found that the medial gastrocnemius (GM) and soleus (SOL) aspects of the Achilles tendon have similar mechanical properties in terms of slack angle (GM: -10.96° ± 3.48°; SOL: -8.50° ± 4.03°), moment arm at 0° of ankle angle (GM: 30.35 ± 6.42 mm; SOL: 31.39 ± 6.42 mm), and stiffness (GM: 23.18 ± 13.46 Nmm-1; SOL: 31.57 ± 13.26 Nmm-1). However, maximal tendon stress in the GM was significantly less than that in SOL (GM: 2.96 ± 1.50 MPa; SOL: 4.90 ± 1.88 MPa, p = 0.024), largely due to the higher passive force observed in the soleus compartment (GM: 99.89 ± 39.50 N; SOL: 174.59 ± 79.54 N, p = 0.020). Moreover, the tendon contributed to more than half of the total muscle-tendon unit lengthening during the passive stretch. This unequal passive stress between the medial gastrocnemius and the soleus tendon might contribute to the asymmetrical loading and deformation of the Achilles tendon during motion reported in the literature. Such information is relevant to understanding the Achilles tendon function and loading profile in pathological populations in the future.
  •  
6.
  • Yan, Shiyang, et al. (författare)
  • Arch-related alteration in foot loading patterns affected by the increasing extent of body mass index in children : A follow-up study
  • 2023
  • Ingår i: Gait & Posture. - : Elsevier BV. - 0966-6362 .- 1879-2219. ; 100, s. 247-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A high load on children 's feet can cause arch deformation and negatively affect their normal development. Studies have yet to document how the foot arch varied with different body mass index (BMI) increments and its influence on foot loading patterns.Methods: Barefoot walking trails were conducted using a Footscan (R) plate system. A follow-up check was per-formed after twenty-four months. Participants were selected with an initial BMI between 14.5 kg/m2 and 16.5 kg/m2. Totally 75 participants were classified into groups 0-7 according to the BMI increment levels of 0-0.49 kg/m2, 0.50-1.49 kg/m2, 1.50-2.49 kg/m2, 2.50-3.49 kg/m2, 3.50-4.49 kg/m2, 4.50-5.49 kg/m2, 5.50-6.49 kg/m2, 6.50-7.49 kg/m2, respectively. Paired t-tests and effect sizes were used to compare the data.Results: The arch index significantly decreased when the BMI reached 20.8 kg/m2. Significantly increased normalized maximum forces were found in the great toe and 1st MTPJ in groups 4-5. Meanwhile, the absence of significance showed under the 3rd-5th, midfoot, and rearfoot in those groups. The normalized maximum force increments under the 3rd-5th MTPJs, midfoot and rearfoot regions in groups 4-5 after the follow-up study were significantly decreased compared with the increments found in groups 0-3, followed by a sudden increase arising under those regions in group 6. It indicates a transition period that leads to alteration in gait pattern charac-teristics when BMI increases to 18.6-19.9 kg/m2 (between group 3 and group 4). Group 6 displayed significantly increased peak pressure amplitudes under the great toe, 1st-3rd MTPJs, midfoot, and medial rearfoot compared to other groups.Significance: There was a transition period when the BMI of normal-weighted children increased to a certain extent and failed to reach the obesity level, resulting in changes in foot arch structure and loading patterns.
  •  
7.
  • Yan, Shiyang, et al. (författare)
  • Mixed factors affecting plantar pressures and center of pressure in obese children : Obesity and flatfoot
  • 2020
  • Ingår i: Gait & Posture. - : Elsevier BV. - 0966-6362 .- 1879-2219. ; 80, s. 7-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Flatfoot has a very high incidence of obese children. Functional parameters such as plantar pressures and center of pressure (COP) are sensitive to foot type. However, previous foot biomechanical studies of obese children rarely excluded the flatfoot as a prerequisite of the participants involved. Research question: This study aimed to determine whether it is essential to define flatfoot as a subject screening criterion in the foot biomechanical study for obese children. Methods: Foot types were classified by arch index (AI). Totally 21 obese children with flatfoot (OF group) along with matched control groups of obese children with normal foot (ON group) and normal-weighted children with flatfoot (NF group) were selected from our database. Barefoot walking trails were conducted using Footscan (R) plate system. Peak force (PF), peak pressure (PP), pressure-time integral (PTI), contact area (CA) and COP data were recorded. Independent t-test and effect size were used to compare the data between the study group and the control groups. Intraclass correlation coefficient was used to measure the between-trail reliability for the dependent variables. Results: In comparison with the OF group, an upward trend for PF, PP and PTI was found for the ON group, while an opposite tendency for the NF group. The OF group displayed a significant larger CA under the midfoot region than the NF group even if there is no significant difference for AI. The OF group displayed a more medial shift of COP progression compared to the ON group. But no significant differences were found for COP parameters between the OF group and the NF group. Significance: This study provided substantial evidence to support that prospective foot biomechanical research on the obese group needs to identify the flatfoot as one of the subject screening criteria to carry out more reliable results without producing confounding effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy