SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Ruiqi) "

Sökning: WFRF:(Yang Ruiqi)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Ruiqi, et al. (författare)
  • Genomic insights revealed the environmental adaptability of Planococcus halotolerans Y50 isolated from petroleum-contaminated soil on the Qinghai-Tibet Plateau
  • 2022
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 823, s. 146368-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Tibetan Plateau niche provides unprecedented opportunities to find microbes that are functional and commercial significance. The present study investigated the physiological and genomic characteristics of Pla-nococcus halotolerans Y50 that was isolated from a petroleum-contaminated soil sample from the Qinghai-Tibet Plateau, and it displayed psychrotolerant, antiradiation, and oil-degraded characteristics. Whole genome sequencing indicated that strain Y50 has a 3.52 Mb genome and 44.7% G + C content, and it possesses 3377 CDSs. The presence of a wide range of UV damage repair genes uvrX and uvsE, DNA repair genes radA and recN, superoxide dismutase, peroxiredoxin and dioxygenase genes provided the genomic basis for the adaptation of the plateau environment polluted by petroleum. Related experiments also verified that the Y50 strain could degrade n-alkanes from C-11-C-23, and approximately 30% of the total petroleum at 25 & DEG;C within 7 days. Meanwhile, strain Y50 could withstand 5 x 10(3) J/m(2) UVC and 10 KGy gamma ray radiation, and it had strong antioxidant and high radical scavengers for superoxide anion, hydroxyl radical and DPPH. In addition, pan-genome analysis and horizontal gene transfers revealed that strains with different niches have obtained various genes through hori -zontal gene transfer in the process of evolution, and the more similar their geographical locations, the more similar their members are genetically and ecologically. In conclusion, P. halotolerans Y50 possesses high potential of applications in the bioremediation of alpine hydrocarbons contaminated environment.
  •  
2.
  • Ngo, Debby, et al. (författare)
  • Proteomic profiling reveals novel biomarkers and pathways in yype 2 diabetes risk
  • 2021
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 6:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent advances in proteomic technologies have made high throughput profiling of low abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across two large longitudinal cohorts (n=2,839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic and clinical data from humans to nominate one specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Further, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 (WFIKKN2) was in turn associated with fasting glucose, hemoglobin A1c and HOMA-IR measurements in humans. In addition to identifying novel disease markers and potential pathways in T2DM, we provide publicly available data to be leveraged for new insights about gene function and disease pathogenesis in the context of human metabolism. .
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy