SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yanik Mehmet Fatih) "

Sökning: WFRF:(Yanik Mehmet Fatih)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allalou, Amin, 1981-, et al. (författare)
  • Approaches for increasing throughput andinformation content of image-based zebrafishscreens
  • 2011
  • Ingår i: Proceeding of SSBA 2011.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Microscopy in combination with image analysis has emerged as one of the most powerful and informativeways to analyze cell-based high-throughput screening (HTS) samples in experiments designed to uncover novel drugs and drug targets. However, many diseases and biological pathways can be better studied in whole animals, particularly diseases and pathways that involve organ systems and multicellular interactions, such as organ development, neuronal degeneration and regeneration, cancer metastasis, infectious disease progression and pathogenesis. The zebrafish is a wide-spread and popular vertebrate model of human organfunction and development, and it is unique in the sense that large-scale in vivo genetic and chemical studies are feasible due in part to its small size, optical transparency,and aquatic habitat. To improve the throughput and complexity of zebrafish screens, a high-throughput platform for cellular-resolution in vivo chemical and genetic screens on zebrafish larvae has been developed at Yanik lab at Research Laboratory of Electronics, MIT, USA. The system loads live zebrafish from reservoirs or multiwell plates, positions and rotates them for high-speed confocal imaging of organs,and dispenses the animals without damage. We present two improvements to the described system, including automation of positioning of the animals and a novel approach for brightfield microscopy tomographic imaging of living animals.
  •  
2.
  •  
3.
  • Chang, Tsung-Yao, et al. (författare)
  • Fully automated cellular-resolution vertebrate screening platform with parallel animal processing
  • 2012
  • Ingår i: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 12:4, s. 711-716
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish larva is an optically-transparent vertebrate model with complex organs that is widelyused to study genetics, developmental biology, and to model various human diseases. In this article, wepresent a set of novel technologies that significantly increase the throughput and capabilities of ourpreviously described vertebrate automated screening technology (VAST). We developed a robustmulti-thread system that can simultaneously process multiple animals. System throughput is limitedonly by the image acquisition speed rather than by the fluidic or mechanical processes. We developedimage recognition algorithms that fully automate manipulation of animals, including orienting andpositioning regions of interest within the microscope’s field of view. We also identified the optimalcapillary materials for high-resolution, distortion-free, low-background imaging of zebrafish larvae.
  •  
4.
  • Eimon, Peter M, et al. (författare)
  • Brain activity patterns in high-throughput electrophysiology screen predict both drug efficacies and side effects.
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neurological drugs are often associated with serious side effects, yet drug screens typically focus only on efficacy. We demonstrate a novel paradigm utilizing high-throughput in vivo electrophysiology and brain activity patterns (BAPs). A platform with high sensitivity records local field potentials (LFPs) simultaneously from many zebrafish larvae over extended periods. We show that BAPs from larvae experiencing epileptic seizures or drug-induced side effects have substantially reduced complexity (entropy), similar to reduced LFP complexity observed in Parkinson's disease. To determine whether drugs that enhance BAP complexity produces positive outcomes, we used light pulses to trigger seizures in a model of Dravet syndrome, an intractable genetic epilepsy. The highest-ranked compounds identified by BAP analysis exhibit far greater anti-seizure efficacy and fewer side effects during subsequent in-depth behavioral assessment. This high correlation with behavioral outcomes illustrates the power of brain activity pattern-based screens and identifies novel therapeutic candidates with minimal side effects.
  •  
5.
  •  
6.
  • Pardo-Martin, Carlos, et al. (författare)
  • High-throughput hyperdimensional vertebrate phenotyping
  • 2013
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4, s. 1467-
  • Tidskriftsartikel (refereegranskat)abstract
    • Most gene mutations and biologically active molecules cause complex responses in animals that cannot be predicted by cell culture models. Yet animal studies remain too slow and their analyses are often limited to only a few readouts. Here we demonstrate high-throughput optical projection tomography with micrometre resolution and hyperdimensional screening of entire vertebrates in tens of seconds using a simple fluidic system. Hundreds of independent morphological features and complex phenotypes are automatically captured in three dimensions with unprecedented speed and detail in semitransparent zebrafish larvae. By clustering quantitative phenotypic signatures, we can detect and classify even subtle alterations in many biological processes simultaneously. We term our approach hyperdimensional in vivo phenotyping. To illustrate the power of hyperdimensional in vivo phenotyping, we have analysed the effects of several classes of teratogens on cartilage formation using 200 independent morphological measurements, and identified similarities and differences that correlate well with their known mechanisms of actions in mammals.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy