SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yapca Omer Erkan) "

Sökning: WFRF:(Yapca Omer Erkan)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akbas, Esvet, et al. (författare)
  • Synthesis and Biological Evaluation of Novel Benzylidene Thiazolo Pyrimidin-3(5H)-One Derivatives
  • 2024
  • Ingår i: Polycyclic aromatic compounds (Print). - : Informa UK Limited. - 1040-6638 .- 1563-5333. ; 44:5, s. 3061-3078
  • Tidskriftsartikel (refereegranskat)abstract
    • Starting compound 1 was synthesized according to reference. 1 Benzylidene thiazole pyrimidin-3(5H)-ones were synthesized reactions of 1 with bromoacetic acid and various aryl-aldehydes in the same vessel via one-step, unlike studies in the literature. Quantum chemical parameters and full geometry optimizations for all compounds were computed using DFT based on B3LYP. Cytotoxic action potential of synthesized compounds was evaluated using trypan blue dye exclusion and MTT assays in different cell lines including adenocarcinoma alveolar basal epithelial-like adherent A549 cells, the colon adenocarcinoma HT-29 cells, prostate adenocarcinoma DU-145 cells, and diploid ARPE-19 retinal pigment epithelial cells. Embryotoxicity and genotoxicity assessments were performed on pluripotent human embryonal carcinoma NT2 and human lymphocyte cells, respectively. Compound A1 exhibited good anticancer activity on A549 and DU-145 cell lines, and the compounds including A3, 4, 6, and 9 induced cytotoxicity on A549 cells. The compounds A1-10 also showed a good biosafety profile at relatively lower concentrations.
  •  
2.
  • Akbas, Esvet, et al. (författare)
  • Synthesis, Characterization, Theoretical Studies and in Vitro Embriyotoxic, Genotoxic and Anticancer Effects of Novel Phenyl(1,4,6-Triphenyl-2-Thioxo-1,2,3,4-Tetrahydropyrimidin-5-yl)Methanone
  • 2023
  • Ingår i: Polycyclic aromatic compounds (Print). - : Informa UK Limited. - 1040-6638 .- 1563-5333. ; , s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, phenyl (1,4,6-triphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone was obtained by using the Biginelli reaction method. The structure of this compound was analyzed using elemental analysis, IR, 1H, and 13C NMR. The quantum chemical calculations (QCC) of this compound were performed density functional theory (DFT) method, 6–31 G (d, p) base set, and B3LYP functions with the Gaussian09W software package. Literature shows that pyrimidine-derived compounds have very active biological properties. For this reason, the biologically active properties of the synthesized compound were also examined. To determine embryotoxic, genotoxic, and cytotoxic effects of compound, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), lactate dehydrogenase (LDH) release, micronucleus (MN) and 8-OH-dG assays were carried out. On the other hand, pharmacokinetic and toxicity properties (ADMET) were predicted in silico via SwissADME and Protox-II web tools. In silico estimates of this compound used in the study showed that the compound has the covetable physicochemical properties for bioavailability. In conclusion, the obtained results of our study clearly showed that this compound exerted strong toxicity potential.
  •  
3.
  • Cadirci, Kenan, et al. (författare)
  • In Vitro Cytotoxic, Genotoxic, Embryotoxic and Oxidative Damage Potentials by Empagliflozin
  • 2024
  • Ingår i: Biology Bulletin of the Russian Academy of Science. - : Pleiades Publishing Ltd. - 1062-3590 .- 1608-3059. ; 51:2, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Empagliflozin (EMPA) is a potent, competitive and selective sodium glucose cotransporter-2 (SGLT-2) inhibitor that ameliorates blood glucose with the insulin-independent manner. EMPA reduces weight and blood pressure of patients with type 2 diabetes mellitus (T2DM) without developing hypoglycemic risk. To the best of our knowledge, its safety profiling has not been evaluated on human blood cell cultures yet. Again, the embryotoxicity potential by EMPA is still unclear. Therefore, in this investigation we aimed to evaluate the in vitro cytotoxic, genotoxic and embryotoxic damage potential as well as antioxidative/oxidative effects by EMPA in cultured human blood and human pluripotent embryonal carcinoma NT2 cells for the first time. Cell cultures (n = 5) were exposed to different concentrations ranging from 3.25 to 100 mg/L of EMPA for 48 and 72 h. Cell viability was measured by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. The alterations in antioxidant/oxidant activity were monitored via measuring the total antioxidant capacity (TAC) and total oxidative stress (TOS) levels. For evaluating the genotoxicity of EMPA chromosomal aberration (CA) assay was performed. The present results revealed that EMPA did not induce cytotoxic or genotoxic damage on healthy human blood cells. Moreover, EMPA exerted non-embryotoxic property and supported antioxidative capacity and decreased the oxidative stress in cultured human blood cells. Our results supported the safe and advantageous use of EMPA for the treatment of T2DM.
  •  
4.
  • Turkez, Hasan, et al. (författare)
  • Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes
  • 2023
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923. ; 15:1, s. 149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries.
  •  
5.
  • Turkez, Hasan, et al. (författare)
  • Toxicity of Glycyl-l-Prolyl-l-Glutamate Pseudotripeptides : Cytotoxic, Oxidative, Genotoxic, and Embryotoxic Perspectives
  • 2022
  • Ingår i: Journal of Toxicology. - : Hindawi Limited. - 1687-8191 .- 1687-8205. ; 2022, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The tripeptide H-Gly-Pro-Glu-OH (GPE) and its analogs began to take much interest from scientists for developing effective novel molecules in the treatment of several disorders including Alzheimer's disease, Parkinson's disease, and stroke. The peptidomimetics of GPEs exerted significant biological properties involving anti-inflammatory, antiapoptotic, and anticancer properties. The assessments of their hematological toxicity potentials are critically required for their possible usage in further preclinical and clinical trials against a wide range of pathological conditions. However, there is so limited information on the safety profiling of GPE and its analogs on human blood tissue from cytotoxic, oxidative, and genotoxic perspectives. And, their embryotoxicity potentials were not investigated yet. Therefore, in this study, measurements of mitochondrial viability (using MTT assay) and lactate dehydrogenase (LDH) release as well as total antioxidant capacity (TAC) assays were performed on cultured human whole blood cells after treatment with GPE and its three novel peptidomimetics for 72 h. Sister chromatid exchange (SCE), micronucleus (MN), and 8-oxo-2-deoxyguanosine (8-OH-dG) assays were performed for determining the genotoxic damage potentials. In addition, the nuclear division index (NDI) was figured out for revealing their cytostatic potentials. Embryotoxicity assessments were performed on cultured human pluripotent NT2 embryonal carcinoma cells by MTT and LDH assays. The present results from cytotoxicity, oxidative, genotoxicity, and embryotoxicity testing clearly propounded that GPEs had good biosafety profiles and were trouble-free from the toxicological point of view. Noncytotoxic, antioxidative, nongenotoxic, noncytostatic, and nonembryotoxic features of GPE analogs are worthwhile exploring further and may exert high potentials for improving the development of novel disease-modifying agents.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy