SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yaseen Zaher) "

Sökning: WFRF:(Yaseen Zaher)

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Afan, Haitham Abdulmohsin, et al. (författare)
  • Thermal and Hydraulic Performances of Carbon and Metallic Oxides-Based Nanomaterials
  • 2022
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 12:9
  • Tidskriftsartikel (refereegranskat)abstract
    • For companies, notably in the realms of energy and power supply, the essential requirement for highly efficient thermal transport solutions has become a serious concern. Current research highlighted the use of metallic oxides and carbon-based nanofluids as heat transfer fluids. This work examined two carbon forms (PEG@GNPs & PEG@TGr) and two types of metallic oxides (Al2O3 & SiO2) in a square heated pipe in the mass fraction of 0.1 wt.%. Laboratory conditions were as follows: 6401 ≤ Re ≤ 11,907 and wall heat flux = 11,205 W/m2. The effective thermal–physical and heat transfer properties were assessed for fully developed turbulent fluid flow at 20–60 °C. The thermal and hydraulic performances of nanofluids were rated in terms of pumping power, performance index (PI), and performance evaluation criteria (PEC). The heat transfer coefficients of the nanofluids improved the most: PEG@GNPs = 44.4%, PEG@TGr = 41.2%, Al2O3 = 22.5%, and SiO2 = 24%. Meanwhile, the highest augmentation in the Nu of the nanofluids was as follows: PEG@GNPs = 35%, PEG@TGr = 30.1%, Al2O3 = 20.6%, and SiO2 = 21.9%. The pressure loss and friction factor increased the highest, by 20.8–23.7% and 3.57–3.85%, respectively. In the end, the general performance of nanofluids has shown that they would be a good alternative to the traditional working fluids in heat transfer requests.
  •  
2.
  • Al-Janabi, Ahmed Mohammed Sami, et al. (författare)
  • Experimental and Numerical Analysis for Earth-Fill Dam Seepage
  • 2020
  • Ingår i: Sustainability. - Switzerland : MDPI. - 2071-1050. ; 12:6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth-fill dams are the most common types of dam and the most economical choice. However, they are more vulnerable to internal erosion and piping due to seepage problems that are the main causes of dam failure. In this study, the seepage through earth-fill dams was investigated using physical, mathematical, and numerical models. Results from the three methods revealed that both mathematical calculations using L. Casagrande solutions and the SEEP /Wnumerical model have a plotted seepage line compatible with the observed seepage line in the physical model. However,when the seepage flow intersected the downstream slope and when piping took place, the use of SEEP /Wto calculate the flow rate became useless as it was unable to calculate the volume of water flow in pipes. This was revealed by the big dierence in results between physical and numerical models in the first physical model, while the results were compatible in the second physical model when the seepage line stayed within the body of the dam and low compacted soil was adopted. Seepage analysis for seven dierent configurations of an earth-fill dam was conducted using the SEEP /W model at normal and maximum water levels to find the most appropriate configuration among them. The seven dam configurations consisted of four homogenous dams and three zoned dams. Seepage analysis revealed that if sucient quantity of silty sand soil is available around the proposed dam location, a homogenous earth-fill dam with a medium drain length of 0.5 m thickness is the best design configuration. Otherwise, a zoned earth-fill dam with a central core and 1:0.5 Horizontal to Vertical ratio (H:V) is preferred.
  •  
3.
  • Al-Janabi, Ahmed Mohammed Sami, et al. (författare)
  • Optimizing Height and Spacing of Check Dam Systems for Better Grassed Channel Infiltration Capacity
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The check dams in grassed stormwater channels enhance infiltration capacity by temporarily blocking water flow. However, the design properties of check dams, such as their height and spacing, have a significant influence on the flow regime in grassed stormwater channels and thus channel infiltration capacity. In this study, a mass-balance method was applied to a grassed channel model to investigate the effects of height and spacing of check dams on channel infiltration capacity. Moreover, an empirical infiltration model was derived by improving the modified Kostiakov model for reliable estimation of infiltration capacity of a grassed stormwater channel due to check dams from four hydraulic parameters of channels, namely, the water level, channel base width, channel side slope, and flow velocity. The result revealed that channel infiltration was increased from 12% to 20% with the increase of check dam height from 10 to 20 cm. However, the infiltration was found to decrease from 20% to 19% when a 20 cm height check dam spacing was increased from 10 to 30 m. These results indicate the effectiveness of increasing height of check dams for maximizing the infiltration capacity of grassed stormwater channels and reduction of runoff volume.
  •  
4.
  • Al-Sulttani, Ali Omran, et al. (författare)
  • Thermal effectiveness of solar collector using Graphene nanostructures suspended in ethylene glycol–water mixtures
  • 2022
  • Ingår i: Energy Reports. - : Elsevier BV. - 2352-4847. ; 8, s. 1867-1882
  • Tidskriftsartikel (refereegranskat)abstract
    • Flat plate solar collectors (FPSCs) are the most often used as solar collectors due to their easiness of installation and usage. The current research investigates the energy efficiency of FPSC using different mass concentration with varied base fluids containing Graphene nanofluids (T-Gr). Mass concentration of 0.1%-wt., 0.075%-wt., 0.050%-wt. and 0.025%-wt. were mixed with ethylene glycol (EG) and distilled water (DW) in different rations. The operating conditions were volumetric flowrate (1.5, 1 and 0.5) LPM 50 °C-input fluid temperature and 800 W/m2-global solar irradiation. Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) were used to synthesize the thermally treated nanomaterial. The theoretical investigation indicated that using T-Gr nanosuspensions increased the FPSC efficiency in comparison with the host fluid for all examined mass concentrations and volumetric flowrates. In quantitative terms, the maximum thermal effectiveness improvement for the EG, (DW:70 + EG:30) and DW:EG (DW:50 + EG:50) and using flowrates of (1.5, 1 and 0.5) LPM were 12.54%, 12.46% and 12.48%. In addition, the research results pointed that the essential parameters (i.e., loss energy (FRUL)) and gain energy (FR (τα)) of the T-Gr nanofluids were increased significantly.
  •  
5.
  • Alawi, Omer A., et al. (författare)
  • Heat transfer and hydrodynamic properties using different metal-oxide nanostructures in horizontal concentric annular tube : An optimization study
  • 2021
  • Ingår i: Nanomaterials. - : MDPI AG. - 2079-4991. ; 11:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k–ε turbulence model for the flow range 1 × 104 ≤ Re ≥ 24 × 103. A wide range of parameters like different nanomaterials (Al2O3, CuO, SiO2 and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.5, 1 and 2) and different aspect ratios (AR) (1.5, 2, 2.5 and 3) were examined. Also, the effect of inner cylinder rotation was discussed. An experiment was conducted out using a field-emission scanning electron microscope (FE-SEM) to characterize metallic oxides in spherical morphologies. Nano-platelet particles showed the best enhancements in heat transfer properties, followed by nano-cylinders, nano-bricks, nano-blades, and nano-spheres. The maximum heat transfer enhancement was found in SiO2, followed by ZnO, CuO, and Al2O3, in that order. Meanwhile, the effect of the HFR parameter was insignificant. At Re = 24,000, the inner wall rotation enhanced the heat transfer about 47.94%, 43.03%, 42.06% and 39.79% for SiO2, ZnO, CuO and Al2O3, respectively. Moreover, the AR of 2.5 presented the higher heat transfer improvement followed by 3, 2, and 1.5.
  •  
6.
  • Alawi, Omer A., et al. (författare)
  • Thermohydraulic performance of thermal system integrated with twisted turbulator inserts using ternary hybrid nanofluids
  • 2023
  • Ingår i: Nanotechnology Reviews. - : Walter de Gruyter. - 2191-9089 .- 2191-9097. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mono, hybrid, and ternary nanofluids were tested inside the plain and twisted-tape pipes using k-omega shear stress transport turbulence models. The Reynolds number was 5,000 ≤ Re ≤ 15,000, and thermophysical properties were calculated under the condition of 303 K. Single nanofluids (Al2O3/distilled water [DW], SiO2/DW, and ZnO/DW), hybrid nanofluids (SiO2 + Al2O3/DW, SiO2 + ZnO/DW, and ZnO + Al2O3/DW) in the mixture ratio of 80:20, and ternary nanofluids (SiO2 + Al2O3 + ZnO/DW) in the mixture ratio of 60:20:20 were estimated in different volumetric concentrations (1, 2, 3, and 4%). The twisted pipe had a higher outlet temperature than the plain pipe, while SiO2/DW had a lower Tout value with 310.933 K (plain pipe) and 313.842 K (twisted pipe) at Re = 9,000. The thermal system gained better energy using ZnO/DW with 6178.060 W (plain pipe) and 8426.474 W (twisted pipe). Furthermore, using SiO2/DW at Re = 9,000, heat transfer improved by 18.017% (plain pipe) and 21.007% (twisted pipe). At Re = 900, the pressure in plain and twisted pipes employing SiO2/DW reduced by 167.114 and 166.994%, respectively. In general, the thermohydraulic performance of DW and nanofluids was superior to one. Meanwhile, with Re = 15,000, DW had a higher value of η Thermohydraulic = 1.678
  •  
7.
  • Ameen, Ameen Mohammed Salih, et al. (författare)
  • Minimizing the Principle Stresses of Powerhoused Rock-Fill Dams Using Control Turbine Running Units: Application of Finite Element Method
  • 2018
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • This study focuses on improving the safety of embankment dams by considering theeffects of vibration due to powerhouse operation on the dam body. The study contains two ainparts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV)model of one vertical Francis turbine unit. The 3D model is run by considering various reservoirconditions and the dimensions of units. The Re-Normalization Group (RNG) k-?? turbulence modelis employed, and the physical properties of water and the flow haracteristics are defined in theturbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam iscreated by using ANSYS®, considering the dam connection with its powerhouse represented by fourvertical Francis turbines, foundation, and the upstream reservoir. Changing the upstream watertable minimum and maximum water levels, standers earth gravity, fluid-solid interface, hydrostaticpressure, and the soil properties are onsidered. The dam model runs to cover all possibilities forturbines operating in accordance with the reservoir discharge ranges. In order to minimize stressesin the dam body and increase dam safety, this study optimizes the turbine operating system byintegrating turbine and dam models.
  •  
8.
  • Arafa, Salaheddin, et al. (författare)
  • Investigation into the permeability and strength of pervious geopolymer concrete containing coated biomass aggregate material
  • 2021
  • Ingår i: Journal of Materials Research and Technology. - : Elsevier. - 2238-7854 .- 2214-0697. ; 15, s. 2075-2087
  • Tidskriftsartikel (refereegranskat)abstract
    • Waste palm oil products can be recycled in the production of pervious geopolymer concrete (PGC) for long-term sustainable development. PGC is a non-slip porous pavement concrete that allows water to pass through. Biomass aggregate (BA) is produced by burning palm oil biomass and is introduced as a replacement for natural aggregate (NA). BA is mixed with fly ash (FA) and alkaline liquid (AL) and heated in an oven at 80 °C for 24 h to produce coated biomass aggregate (CBA). PGC containing CBA is commonly used as a cement substitute in concrete. This study aims to develop and evaluate the effect of rainfall intensity on the ability of PGC to reduce stormwater runoff. Coating BA with geopolymer paste resulted in improved properties, better Aggregate crushing value (ACV), Aggregate impact value (AIV), water absorption and higher compressive strength compared with BA. Results indicated, a PGC with a FA/CBA ratio of 1:7, CBA of 5–10 mm, NaOH molarity of 10 M, Na2SiO3/NaOH ratio of 2.5, and AL/FA ratio of 0.5 when cured in an oven for 24 h at 80 °C, gave the optimum ratio for compressive strength of 13.7 MPa and water permeability of 2.1 cm/s. Both BA and CBA revealed a viable alternative aggregates for producing PGC and that the compressive strength of PGC made with CBA was 51% greater than cement pervious concrete containing NA. The results also showed that the reduction in runoff was due to the permeable concrete and decreased runoff with the increased rainfall intensity.
  •  
9.
  • Armanuos, Asaad M., et al. (författare)
  • Assessing the Effectiveness of Using Recharge Wells for Controlling the Saltwater Intrusion in Unconfined Coastal Aquifers with Sloping Beds : Numerical Study
  • 2020
  • Ingår i: Sustainability. - Switzerland : MDPI. - 2071-1050. ; 12:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater systems are considered major freshwater sources for many coastal aquifers worldwide. Seawater intrusion (SWI) inland into freshwater coastal aquifers is a common environmental problem that causes deterioration of the groundwater quality. This research investigates the effectiveness of using an injection through a well to mitigate the SWI in sloping beds of unconfined coastal aquifers. The interface was simulated using SEAWAT code. The repulsion ratios due to the length of the SWI wedge (RL) and the area of the saltwater wedge (RA) were computed. A sensitivity analysis was conducted to recognize the change in the confining layer bed slope (horizontal, positive, and negative) and hydraulic parameters of the value of the SWI repulsion ratio. Injection at the toe itself achieved higher repulsion ratios. RL and RA declined if the injection point was located remotely and higher than the toe of the seawater wedge. Installation at the toe achieved a higher RL in positive sloping followed by horizontal and negative slopes. Moreover, the highest value of RA could be reached by injecting at the toe itself with a horizontal bed aquifer, followed by negative and positive slopes. The recharge well is confirmed as one of the most effective applications for the mitigation of SWI in sloping bed aquifers. The Akrotiri case study shows that the proposed recharging water method has a significant impact on controlling SWI and declines in both SWI wedge length and area.
  •  
10.
  • Armanuos, Asaad M., et al. (författare)
  • Cross Assessment of Twenty-One Different Methods for Missing Precipitation Data Estimation
  • 2020
  • Ingår i: Atmosphere. - Switzerland : MDPI. - 2073-4433. ; 11:4, s. 1-35
  • Tidskriftsartikel (refereegranskat)abstract
    • The  results  of  metrological,  hydrological,  and  environmental  data  analyses  are  mainlydependent  on  the  reliable  estimation  of  missing  data.  In  this  study,  21  classical  methods  were evaluated to determine the best method for infilling the missing precipitation data in Ethiopia. The monthly data collected from 15 different stations over 34 years from 1980 to 2013 were considered. Homogeneity  and  trend  tests  were  performed  to  check  the  data.  The  results  of  the  different methods were  compared  using the mean absolute error (MAE),  root-mean-square  error (RMSE), coefficient  of  efficiency  (CE),  similarity  index  (S-index),  skill  score  (SS),  and  Pearson  correlation coefficient (rPearson). The results of this paper confirmed that the normal ratio (NR), multiple linear regression (MLR), inverse distance weighting (IDW), correlation coefficient weighting (CCW), and arithmetic average (AA) methods are the most reliable methods of those studied. The NR method provides  the  most  accurate  estimations  with  rPearson   of  0.945,  mean  absolute  error  of  22.90  mm, RMSE of  33.695  mm,  similarity  index  of 0.999,  CE  index of  0.998,  and  skill  score of  0.998.  When comparing the observed results and the estimated results from the NR, MLR, IDW, CCW, and AA methods, the MAE and RMSE were found to be low, and high values of CE, S-index, SS, and rPearson were achieved. On the other hand, using the closet station (CS), UK traditional, linear regression (LR),  expectation  maximization  (EM),  and  multiple  imputations  (MI)  methods  gave  the  lowest accuracy, with MAE and RMSE values varying from 30.424 to 47.641 mm and from 49.564 to 58.765 mm, respectively. The results of this study suggest that the recommended methods are applicable for different types of climatic data in Ethiopia and arid regions in other countries around the world.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70
Typ av publikation
tidskriftsartikel (69)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (70)
Författare/redaktör
Al-Ansari, Nadhir, 1 ... (63)
Yaseen, Zaher Mundhe ... (57)
Salih, Sinan Q. (19)
Shahid, Shamsuddin (17)
Yaseen, Zaher (12)
Sharafati, Ahmad (11)
visa fler...
Aldlemy, Mohammed Su ... (9)
Chau, Kwok-Wing (7)
Afan, Haitham Abdulm ... (6)
Homod, Raad Z. (6)
Alawi, Omer A. (6)
Bhagat, Suraj Kumar (6)
Scholz, Miklas (5)
Abdelrazek, Ali H. (5)
Ahmed, Waqar (5)
Falah, Mayadah W. (5)
Armanuos, Asaad M. (5)
Al-Janabi, Ahmed Moh ... (4)
Hussein, Omar A. (4)
Eltaweel, Mahmoud (4)
Ameen, Ameen Mohamme ... (4)
Heddam, Salim (4)
Khedher, Khaled Moha ... (3)
Malik, Anurag (3)
Sulaiman, Sadeq Olei ... (3)
Jawad, Ali H. (3)
Milad, Abdalrhman (3)
Yusoff, Nur Izzi Md. (3)
Beyaztas, Ufuk (3)
Tiyasha, Tiyasha (3)
Bokde, Neeraj Dhanra ... (3)
Kisi, Ozgur (3)
Haghbin, Masoud (3)
Abba, S. I. (2)
Sammen, Saad Sh. (2)
Kumar, Anil (2)
Mussa, Zainab Haider (2)
Ghazali, Abdul Halim (2)
Kamar, Haslinda Moha ... (2)
Hameed, Mohammed Maj ... (2)
Tung, Tran Minh (2)
Feijóo, Andrés (2)
Deo, Ravinesh C. (2)
Ehteram, Mohammad (2)
Ahmadianfar, Iman (2)
Qi, Chongchong (2)
Hadi, Sinan Jasim (2)
Tan, Mou Leong (2)
Sa’adi, Zulfaqar (2)
Al-Khafaji, Zainab (2)
visa färre...
Lärosäte
Luleå tekniska universitet (64)
Lunds universitet (5)
Stockholms universitet (1)
Jönköping University (1)
Språk
Engelska (70)
Forskningsämne (UKÄ/SCB)
Teknik (67)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy