SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ye Weihua) "

Sökning: WFRF:(Ye Weihua)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ariöz, Candan, 1983-, et al. (författare)
  • Anionic Lipid Binding to the Foreign Protein MGS Provides a Tight Coupling between Phospholipid Synthesis and Protein Overexpression in Escherichia coli
  • 2013
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 52:33, s. 5533-5544
  • Tidskriftsartikel (refereegranskat)abstract
    • Certain membrane proteins involved in lipid synthesis can induce formation of new intracellular membranes in Escherichia coli, i.e., intracellular vesicles. Among those, the foreign monotopic glycosyltransferase MGS from Acholeplasma laidlawii triggers such massive lipid synthesis when overexpressed. To examine the mechanism behind the increased lipid synthesis, we investigated the lipid binding properties of MGS in vivo together with the correlation between lipid synthesis and MGS overexpression levels. A good correlation between produced lipid quantities and overexpressed MGS protein was observed when standard LB medium was supplemented with four different lipid precursors that have significant roles in the lipid biosynthesis pathway. Interestingly, this correlation was highest concerning anionic lipid production and at the same time dependent on the selective binding of anionic lipid molecules by MGS. A selective interaction with anionic lipids was also observed in vitro by P-31 NMR binding studies using bicelles prepared with E. coli lipids. The results clearly demonstrate that the discriminative withdrawal of anionic lipids, especially phosphatidylglycerol, from the membrane through MGS binding triggers an in vivo signal for cells to create a feed-forward stimulation of lipid synthesis in E. coil. By this mechanism, cells can produce more membrane surface in order to accommodate excessively produced MGS molecules, which results in an interdependent cycle of lipid and MGS protein synthesis.
  •  
2.
  • Babina, Arianne M., et al. (författare)
  • Rescue of Escherichia coli auxotrophy by de novo small proteins
  • 2023
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing numbers of small proteins with diverse physiological roles are being identified and characterized in both prokaryotic and eukaryotic systems, but the origins and evolution of these proteins remain unclear. Recent genomic sequence analyses in several organisms suggest that new functions encoded by small open reading frames (sORFs) may emerge de novo from noncoding sequences. However, experimental data demonstrating if and how randomly generated sORFs can confer beneficial effects to cells are limited. Here, we show that by upregulating hisB expression, de novo small proteins (<= 50 amino acids in length) selected from random sequence libraries can rescue Escherichia coli cells that lack the conditionally essential SerB enzyme. The recovered small proteins are hydrophobic and confer their rescue effect by binding to the 5 ' end regulatory region of the his operon mRNA, suggesting that protein binding promotes structural rearrangements of the RNA that allow increased hisB expression. This study adds RNA regulatory elements as another interacting partner for de novo proteins isolated from random sequence libraries and provides further experimental evidence that small proteins with selective benefits can originate from the expression of nonfunctional sequences.
  •  
3.
  • Bai, Yang, et al. (författare)
  • Geometry design of tethered small-molecule acceptor enables highly stable and efficient polymer solar cells
  • 2023
  • Ingår i: Nature Communications. - : NATURE PORTFOLIO. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • With the power conversion efficiency of binary polymer solar cells dramatically improved, the thermal stability of the small-molecule acceptors raised the main concerns on the device operating stability. Here, to address this issue, thiophene-dicarboxylate spacer tethered small-molecule acceptors are designed, and their molecular geometries are further regulated via the thiophene-core isomerism engineering, affording dimeric TDY-alpha with a 2, 5-substitution and TDY-beta with 3, 4-substitution on the core. It shows that TDY-alpha processes a higher glass transition temperature, better crystallinity relative to its individual small-molecule acceptor segment and isomeric counterpart of TDY-beta, and amore stablemorphology with the polymer donor. As a result, the TDY-alpha based device delivers a higher device efficiency of 18.1%, and most important, achieves an extrapolated lifetime of about 35000 hours that retaining 80% of their initial efficiency. Our result suggests that with proper geometry design, the tethered small-molecule acceptors can achieve both high device efficiency and operating stability.
  •  
4.
  •  
5.
  • Brown, Christian, et al. (författare)
  • Structural and functional characterization of the microtubule interacting and trafficking domains of two oomycete chitin synthases
  • 2016
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 283:16, s. 3072-3088
  • Tidskriftsartikel (refereegranskat)abstract
    • Chitin synthases (Chs) are responsible for the synthesis of chitin, a key structural cell wall polysaccharide in many organisms. They are essential for growth in certain oomycete species, some of which are pathogenic to diverse higher organisms. Recently, a Microtubule Interacting and Trafficking (MIT) domain, which is not found in any fungal Chs, has been identified in some oomycete Chs proteins. Based on experimental data relating to the binding specificity of other eukaryotic MIT domains, there was speculation that this domain may be involved in the intracellular trafficking of Chs proteins. However, there is currently no evidence for this or any other function for the MIT domain in these enzymes. To attempt to elucidate their function, MIT domains from two Chs enzymes from the oomycete Saprolegnia monoica were cloned, expressed and characterized. Both were shown to interact strongly with the plasma membrane component phosphatidic acid, and to have additional putative interactions with proteins thought to be involved in protein transport and localization. Aiding our understanding of these data, the structure of the first MIT domain from a carbohydrate-active enzyme (MIT1) was solved by NMR, and a model structure of a second MIT domain (MIT2) was built by homology modelling. Our results suggest a potential function for these MIT domains in the intracellular transport and/or regulation of Chs enzymes in the oomycetes. 
  •  
6.
  • Gustafsson, Robert, et al. (författare)
  • Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring : An Inactive Enzyme with Intact Substrate Binding
  • 2020
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, diering by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to dierences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.
  •  
7.
  • Karlsson, Elin, 1992-, et al. (författare)
  • Intrinsically Disordered Flanking Regions Increase the Affinity of a Transcriptional Coactivator Interaction across Vertebrates
  • 2023
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 62:18, s. 2710-2716
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between two proteins are often mediated by a disordered region in one protein binding to a groove in a folded interaction domain in the other one. While the main determinants of a certain interaction are typically found within a well-defined binding interface involving the groove, recent studies show that nonspecific contacts by flanking regions may increase the affinity. One example is the coupled binding and folding underlying the interaction between the two transcriptional coactivators NCOA3 (ACTR) and CBP, where the flanking regions of an intrinsically disordered region in human NCOA3 increases the affinity for CBP. However, it is not clear whether this flanking region-mediated effect is a peculiarity of this single protein interaction or if it is of functional relevance in a broader context. To further assess the role of flanking regions in the interaction between NCOA3 and CBP, we analyzed the interaction across orthologs and paralogs (NCOA1, 2, and 3) in human, zebra fish, and ghost shark. We found that flanking regions increased the affinity 2- to 9-fold in the six interactions tested. Conservation of the amino acid sequence is a strong indicator of function. Analogously, the observed conservation of increased affinity provided by flanking regions, accompanied by moderate sequence conservation, suggests that flanking regions may be under selection to promote the affinity between NCOA transcriptional coregulators and CBP.
  •  
8.
  • Karlsson, Elin, et al. (författare)
  • Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins
  • 2020
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 295:51, s. 17698-17712
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.
  •  
9.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
10.
  • Liebau, Jobst, et al. (författare)
  • Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR
  • 2017
  • Ingår i: Magnetic Resonance in Chemistry. - : Wiley. - 0749-1581 .- 1097-458X. ; 55:5, s. 395-404
  • Forskningsöversikt (refereegranskat)abstract
    • Small isotropic bicelles are versatile membrane mimetics, which, in contrast tomicelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rimof the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (16)
annan publikation (1)
doktorsavhandling (1)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Mäler, Lena (9)
Andersson, Eva (3)
Glaser, Elzbieta (2)
Spånning, Erika (2)
Rolandsson, Olov (1)
Nabika, Toru (1)
visa fler...
Barth, Andreas (1)
Bai, Yang (1)
Wang, Feng (1)
Raitakari, Olli T (1)
Ohkubo, Takayoshi (1)
Andersson, Dan I. (1)
Deloukas, Panos (1)
Vineis, Paolo (1)
Franks, Paul W. (1)
Karlsson, Elin (1)
Clarke, Robert (1)
Shu, Xiao-Ou (1)
Zheng, Wei (1)
Chen, Qi (1)
Lind, Jesper (1)
McCarthy, Mark I (1)
Ahluwalia, Tarunveer ... (1)
Linneberg, Allan (1)
Grarup, Niels (1)
Pedersen, Oluf (1)
Hansen, Torben (1)
Koivula, Robert (1)
Mohlke, Karen L (1)
Scott, Robert A (1)
Jorgensen, Torben (1)
Saleheen, Danish (1)
Stram, Daniel O (1)
Pettersson, Mats (1)
Verweij, Niek (1)
Collins, Rory (1)
Andersson, Leif (1)
Gieger, Christian (1)
Peters, Annette (1)
Waldenberger, Melani ... (1)
Samani, Nilesh J. (1)
Jarvelin, Marjo-Riit ... (1)
Nikus, Kjell (1)
Barroso, Ines (1)
Zhang, Yi (1)
Gustafsson, Robert (1)
Luan, Jian'an (1)
Li, Yongfang (1)
Andersson, Siv G. E. (1)
Enbody, Erik D (1)
visa färre...
Lärosäte
Stockholms universitet (10)
Uppsala universitet (6)
Linköpings universitet (3)
Kungliga Tekniska Högskolan (2)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy