SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yedugundla Kiran 1982 ) "

Sökning: WFRF:(Yedugundla Kiran 1982 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Yedugundla, Kiran, 1982- (författare)
  • Evaluating and Reducing Multipath Transport Latency
  • 2019
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Access to the Internet is a very significant part of everyday life with increasing online services such as news delivery, banking, gaming, audio and high quality movies. Applications require different transport guarantees with some requiring higher bandwidth and others low latency. Upgrading access link capacity does not guarantee faster access to the Internet as it offers higher bandwidth but may not offer low latency. With increasing number of mobile devices supporting more than one access technologies (e.g., WLAN, 3G, 4G,..), there is a need to analyse the impact of using multiple such technologies at the same time. Legacy transport protocols such as TCP or SCTP are only able to connect to one access network at a time to create an end-to-end connection. When more than one access technology is used, there may be a large difference in the data rate offered by each technology. This asymmetry might impact latency sensitive applications by creating out of order delivery. In this thesis, we focus on the latency aspect of multipath transport protocol performance. We consider CMT-SCTP and Multipath TCP as available multipath protocols that were designed for exploiting multiple paths for better throughput and reliability. We consider various real world traffic scenarios such as Video, Gaming and Web traffic to measure end-to-end latency. We perform simulations, emulations and experiments using heterogeneous network settings involving access networks with different bandwidth, delay and loss characteristics. MPTCP performs better in terms of latency than CMT-SCTP and TCP in certain scenarios where available paths are symmetric. However, MPTCP does not perform well in asymmetric scenarios with latency sensitive traffic. This analysis provides insights in to various areas of improvement in MPTCP such as scheduling and loss recovery to achieve low latency. We further focus on packet loss recovery in MPTCP for specific cases of tail losses to reduce latency. Tail losses are the losses that occur at the end of a packet stream. Recovering such losses is of higher significance to latency sensitive applications. We propose a modification to the use of TLP, a mechanism in TCP for tail loss recovery. We evaluate the performance of proposed TLP modification, first using emulations and with real world network experiments. Our results show significant improvements in latency for specific loss scenarios in emulations and up to 50% improvement in experiments.
  •  
3.
  • Yedugundla, Kiran, 1982-, et al. (författare)
  • Handling Packet Losses in Cloud-Based Application Traffic
  • 2019
  • Ingår i: Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER. - : SciTePress. - 9789897583650 ; , s. 111-119
  • Konferensbidrag (refereegranskat)abstract
    • Internet traffic is comprised of data flows from various applications with unique traffic characteristics. For many cloud applications, end-to-end latency is a primary factor affecting the perceived user experience. As packet losses cause delays in the communication they impact user experience, making efficient handling of packet losses an important function of transport layer protocols. Multipath TCP (MPTCP) is a modification to TCP that enables simultaneous use of several paths for a TCP flow. MPTCP is known to improve throughput. However, the performance of MPTCP is not optimal when handling certain loss scenarios. Efficient packet loss recovery is thus important to achieve desirable flow completion times for interactive cloud-based applications. In this paper we evaluate the performance of MPTCP in handling tail losses using traffic traces from various cloud-based applications. Tail losses, losses that occur at the end of a flow or traffic burst, are particularly challenging from a latency perspective as they are difficult to detect and recover in a timely manner. Tail losses in TCP are handled by using a tail loss probe (TLP) mechanism which was adapted to MPTCP from TCP. We investigate the performance of TLP in MPTCP, comparing the standard implementation to a recently proposed, less conservative approach. Our experimental results show that a less conservative implementation of TLP performs significantly better than the standard implementation in handling tail losses, reducing the average burst completion time of cloud based applications when tail loss occurs by up to 50% in certain cases.
  •  
4.
  • Yedugundla, Kiran, 1982-, et al. (författare)
  • Probe or Wait : Handling tail losses using Multipath TCP
  • 2017
  • Ingår i: 2017 IFIP Networking Conference (IFIP Networking) and Workshops. - : IEEE. - 9783901882944
  • Konferensbidrag (refereegranskat)abstract
    • Packet losses are known to affect the performance of latency sensitive Internet applications such as media streaming and gaming. Transport protocols recover from packet loss in order to provide reliable end-to-end communication and improve user experience. The efficiency of loss recovery mechanisms influences the completion time of flows, and thus also the application performance as perceived by the end user. In this paper we focus on state-of-the-art loss recovery mechanisms for TCP and Multipath TCP. We use controlled tail loss scenarios to evaluate the performance of loss recovery mechanisms and, based on the observations, we propose an enhanced tail loss recovery mechanism for Multipath TCP, to improve the loss recovery time. Our experiment results, using the Linux Multipath TCP implementation, show consistent end-to-end latency performance improvement in considered scenarios.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy