SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yesildag B) "

Sökning: WFRF:(Yesildag B)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Mir-Coll, J, et al. (författare)
  • Human Islet Microtissues as an In Vitro and an In Vivo Model System for Diabetes
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of pancreatic β-cell function is a critical event in the pathophysiology of type 2 diabetes. However, studies of its underlying mechanisms as well as the discovery of novel targets and therapies have been hindered due to limitations in available experimental models. In this study we exploited the stable viability and function of standardized human islet microtissues to develop a disease-relevant, scalable, and reproducible model of β-cell dysfunction by exposing them to long-term glucotoxicity and glucolipotoxicity. Moreover, by establishing a method for highly-efficient and homogeneous viral transduction, we were able to monitor the loss of functional β-cell mass in vivo by transplanting reporter human islet microtissues into the anterior chamber of the eye of immune-deficient mice exposed to a diabetogenic diet for 12 weeks. This newly developed in vitro model as well as the described in vivo methodology represent a new set of tools that will facilitate the study of β-cell failure in type 2 diabetes and would accelerate the discovery of novel therapeutic agents.
  •  
3.
  •  
4.
  • Ilegems, E, et al. (författare)
  • HIF-1α inhibitor PX-478 preserves pancreatic β cell function in diabetes
  • 2022
  • Ingår i: Science translational medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6242 .- 1946-6234. ; 14:638, s. eaba9112-
  • Tidskriftsartikel (refereegranskat)abstract
    • During progression of type 2 diabetes, pancreatic β cells are subjected to sustained metabolic overload. We postulated that this state mediates a hypoxic phenotype driven by hypoxia-inducible factor–1α (HIF-1α) and that treatment with the HIF-1α inhibitor PX-478 would improve β cell function. Our studies showed that the HIF-1α protein was present in pancreatic β cells of diabetic mouse models. In mouse islets with high glucose metabolism, the emergence of intracellular Ca2+oscillations at low glucose concentration and the abnormally high basal release of insulin were suppressed by treatment with the HIF-1α inhibitor PX-478, indicating improvement of β cell function. Treatment of db/db mice with PX-478 prevented the rise of glycemia and diabetes progression by maintenance of elevated plasma insulin concentration. In streptozotocin-induced diabetic mice, PX-478 improved the recovery of glucose homeostasis. Islets isolated from these mice showed hallmarks of improved β cell function including elevation of insulin content, increased expression of genes involved in β cell function and maturity, inhibition of dedifferentiation markers, and formation of mature insulin granules. In response to PX-478 treatment, human islet organoids chronically exposed to high glucose presented improved stimulation index of glucose-induced insulin secretion. These results suggest that the HIF-1α inhibitor PX-478 has the potential to act as an antidiabetic therapeutic agent that preserves β cell function under metabolic overload.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy