SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yi Chuixiang) "

Sökning: WFRF:(Yi Chuixiang)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Helbig, Manuel, et al. (författare)
  • Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 0168-1923. ; 307
  • Forskningsöversikt (refereegranskat)abstract
    • The atmospheric boundary layer mediates the exchange of energy, matter, and momentum between the land surface and the free troposphere, integrating a range of physical, chemical, and biological processes and is defined as the lowest layer of the atmosphere (ranging from a few meters to 3 km). In this review, we investigate how continuous, automated observations of the atmospheric boundary layer can enhance the scientific value of co-located eddy covariance measurements of land-atmosphere fluxes of carbon, water, and energy, as are being made at FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-based flux measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface flux and atmospheric boundary layer exchange dynamics and feedbacks at flux tower sites, (2) to support flux footprint modelling, the interpretation of surface fluxes in heterogeneous and mountainous terrain, and quality control of eddy covariance flux measurements, (3) to support regional-scale modeling and upscaling of surface fluxes to continental scales, and (4) to quantify land-atmosphere coupling and validate its representation in Earth system models. Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites, and supporting the sharing of these data to tower networks, would allow the Earth science community to address new emerging research questions, better interpret ongoing flux tower measurements, and would present novel opportunities for collaborations between FLUXNET scientists and atmospheric and remote sensing scientists.
  •  
2.
  • Huang, Kaicheng, et al. (författare)
  • Tipping point of a conifer forest ecosystem under severe drought
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought-induced tree mortality has recently received considerable attention. Questions have arisen over the necessary intensity and duration thresholds of droughts that are sufficient to trigger rapid forest declines. The values of such tipping points leading to forest declines due to drought are presently unknown. In this study, we have evaluated the potential relationship between the level of tree growth and concurrent drought conditions with data of the tree growth-related ring width index (RWI) of the two dominant conifer species (Pinus edulis and Pinus ponderosa) in the Southwestern United State  (SWUS) and the meteorological drought-related standardized precipitation evapotranspiration index (SPEI). In this effort, we determined the binned averages of RWI and the 11 month SPEI within the month of July within each bin of 30 of RWI in the range of 0–3000.Wefound a significant correlation between the binned averages of RWI and SPEI at the regional-scale under dryer conditions. The tipping point of forest declines to drought is predicted by the regression model as SPEItp = −1.64 and RWItp = 0, that is, persistence of the water deficit (11 month) with intensity of −1.64 leading to negligible growth for the conifer species. When climate conditions are wetter, the correlation between the binned averages ofRWI and SPEI is weaker which we believe is most likely due to soil water and atmospheric moisture levels no longer being the dominant factor limiting tree growth.Wealso illustrate a potential application of the derived tipping point (SPEItp = −1.64) through an examination of the 2002 extreme drought event in theSWUSconifer forest regions. Distinguished differences in remote-sensing based NDVI anomalies were found between the two regions partitioned by the derived tipping point.
  •  
3.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
4.
  • Yi, Chuixiang, et al. (författare)
  • Focus on extreme events and the carbon cycle
  • 2015
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 10:7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
5.
  • Yi, Chuixiang, et al. (författare)
  • Stably stratified canopy flow in complex terrain
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15, s. 7457-7470
  • Tidskriftsartikel (refereegranskat)abstract
    • Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem–atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k–ϵ  turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier–Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
  •  
6.
  • Zhang, Qin, et al. (författare)
  • Climate indices as predictors of global soil organic carbon stocks
  • 2024
  • Ingår i: GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY. - 0435-3676 .- 1468-0459.
  • Tidskriftsartikel (refereegranskat)abstract
    • Global soils store more carbon than the atmosphere and terrestrial vegetation combined, with a significant proportion located in colder regions. Earth system models incorporating climate-carbon feedback suggest that a warming climate can potentially destabilize soil carbon storage, leading to carbon release into the atmosphere. However, existing models are based on limited measurements of soil organic carbon (SOC) loss and a comprehensive global-scale climate indices that effectively characterizes climate-SOC relationships is currently lacking. In this study, we present a synthetic analysis that evaluates the effectiveness of different climate indices in estimating SOC stocks using a global compilation of SOC data and the Boltzmann Sigmoidal Model (BSM). Our findings reveal that a climate index, defined as ${\rm TD}\hbox{-}{\rm Index} = {\rm exp}\lpar {-0.002T-0.8D} \rpar$TD-Index=exp(-0.002T-0.8D), where T and D are mean century temperature (MCT) and dryness respectively, serves as the most reliable predictor for SOC stocks. Furthermore, we observed temperature tipping points for SOC, ranging from -4.5 to -3 degrees C for different soil layers. As the temperature transitions from being below to above the tipping point, the SOC shifts from a stable, high state to a rapid decline. An analysis of the projected temperatures for SOC under various future greenhouse gas emissions scenarios showed a northward shift in the northern hemisphere, potentially opening up vast areas of arctic territory to increased SOC loss from the soils, with corresponding emissions of the stored carbon into the atmosphere. Our findings open up new avenues for research on and management strategies for climate-related SOC dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy