SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yin Anyue) "

Sökning: WFRF:(Yin Anyue)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yin, Anyue, et al. (författare)
  • Anti-cancer treatment schedule optimization based on tumor dynamics modelling incorporating evolving resistance
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative characterization of evolving tumor resistance under targeted treatment could help identify novel treatment schedules, which may improve the outcome of anti-cancer treatment. In this study, a mathematical model which considers various clonal populations and evolving treatment resistance was developed. With parameter values fitted to the data or informed by literature data, the model could capture previously reported tumor burden dynamics and mutant KRAS levels in circulating tumor DNA (ctDNA) of patients with metastatic colorectal cancer treated with panitumumab. Treatment schedules, including a continuous schedule, intermittent schedules incorporating treatment holidays, and adaptive schedules guided by ctDNA measurements were evaluated using simulations. Compared with the continuous regimen, the simulated intermittent regimen which consisted of 8-week treatment and 4-week suspension prolonged median progression-free survival (PFS) of the simulated population from 36 to 44 weeks. The median time period in which the tumor size stayed below the baseline level (T-TS
  •  
2.
  • Yin, Anyue, et al. (författare)
  • Quantitative modeling of tumor dynamics and development of drug resistance in non-small cell lung cancer patients treated with erlotinib
  • 2024
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 13:4, s. 612-623
  • Tidskriftsartikel (refereegranskat)abstract
    • Insight into the development of treatment resistance can support the optimization of anticancer treatments. This study aims to characterize the tumor dynamics and development of drug resistance in patients with non-small cell lung cancer treated with erlotinib, and investigate the relationship between baseline circulating tumor DNA (ctDNA) data and tumor dynamics. Data obtained for the analysis included (1) intensively sampled erlotinib concentrations from 29 patients from two previous pharmacokinetic (PK) studies, and (2) tumor sizes, ctDNA measurements, and sparsely sampled erlotinib concentrations from 18 patients from the START-TKI study. A two-compartment population PK model was first developed which well-described the PK data. The PK model was subsequently applied to investigate the exposure-tumor dynamics relationship. To characterize the tumor dynamics, models accounting for intra-tumor heterogeneity and acquired resistance with or without primary resistance were investigated. Eventually, the model assumed acquired resistance only resulted in an adequate fit. Additionally, models with or without exposure-dependent treatment effect were explored, and no significant exposure-response relationship for erlotinib was identified within the observed exposure range. Subsequently, the correlation of baseline ctDNA data on EGFR and TP53 variants with tumor dynamics' parameters was explored. The analysis indicated that higher baseline plasma EGFR mutation levels correlated with increased tumor growth rates, and the inclusion of ctDNA measurements improved model fit. This result suggests that quantitative ctDNA measurements at baseline have the potential to be a predictor of anticancer treatment response. The developed model can potentially be applied to design optimal treatment regimens that better overcome resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy