SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yin XM) "

Sökning: WFRF:(Yin XM)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
6.
  •  
7.
  • Gao, MC, et al. (författare)
  • Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 5246-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long segmental repair of trachea stenosis is an intractable condition in the clinic. The reconstruction of an artificial substitute by tissue engineering is a promising approach to solve this unmet clinical need. 3D printing technology provides an infinite possibility for engineering a trachea. Here, we 3D printed a biodegradable reticular polycaprolactone (PCL) scaffold with similar morphology to the whole segment of rabbits’ native trachea. The 3D-printed scaffold was suspended in culture with chondrocytes for 2 (Group I) or 4 (Group II) weeks, respectively. This in vitro suspension produced a more successful reconstruction of a tissue-engineered trachea (TET), which enhanced the overall support function of the replaced tracheal segment. After implantation of the chondrocyte-treated scaffold into the subcutaneous tissue of nude mice, the TET presented properties of mature cartilage tissue. To further evaluate the feasibility of repairing whole segment tracheal defects, replacement surgery of rabbits’ native trachea by TET was performed. Following postoperative care, mean survival time in Group I was 14.38 ± 5.42 days, and in Group II was 22.58 ± 16.10 days, with the longest survival time being 10 weeks in Group II. In conclusion, we demonstrate the feasibility of repairing whole segment tracheal defects with 3D printed TET.
  •  
8.
  • Liao, XM, et al. (författare)
  • Vitamin D Enhances Neutrophil Generation and Function in Zebrafish (Danio rerio)
  • 2022
  • Ingår i: Journal of innate immunity. - : S. Karger AG. - 1662-8128 .- 1662-811X. ; 14:3, s. 229-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Vitamin D (VD) is a major regulator of calcium metabolism in many living organisms. In addition, VD plays a key role in regulating innate and adaptive immunity in vertebrates. Neutrophils constitute an important part of the first line of defense against invading microbes; however, the potential effect of VD on neutrophils remains elusive. Thus, in this study zebrafish in different developmental stages were utilized to identify the potential role of VD in the basal homeostasis and functions of neutrophils. Our results showed that addition of exogenous VD<sub>3</sub> promoted granulopoiesis in zebrafish larvae. Reciprocally, neutrophil abundance in the intestine of adult zebrafish with a <i>cyp2r1</i> mutant, lacking the capacity to 25-hydroxylate VD, was reduced. Moreover, VD-mediated granulopoiesis was still observed in gnotobiotic zebrafish larvae, indicating that VD regulates neutrophil generation independent of the microbiota during early development. In contrast, VD was incapable to influence granulopoiesis in adult zebrafish when the commensal bacteria were depleted by antibiotic treatment, suggesting that VD might modulate neutrophil activity via different mechanisms depending on the developmental stage. In addition, we found that VD<sub>3</sub> augmented the expression of <i>il-8</i> and neutrophil recruitment to the site of caudal fin amputation. Finally, VD<sub>3</sub> treatment significantly decreased bacterial counts and mortality in zebrafish infected with <i>Edwardsiella tarda</i> (<i>E. tarda</i>) in a neutrophil-dependent manner. Combined, these findings demonstrate that VD regulates granulopoiesis and neutrophil function in zebrafish immunity.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy