SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yli Juuti T.) "

Sökning: WFRF:(Yli Juuti T.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlm, Lars, et al. (författare)
  • Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber
  • 2016
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 50:10, s. 1017-1032
  • Tidskriftsartikel (refereegranskat)abstract
    • Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1-1.3 for a 2nm particle and DMA gas-phase mixing ratios between 3.5 and 80 pptv. These ratios agree well with observations by an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer. Simulations with MABNAG, direct observations of the composition of clusters <2nm, and indirect observations of the particle composition indicate that the acidity of the nucleated particles decreases as they grow from approximate to 1 to 20nm. However, MABNAG predicts less acidic particles than suggested by the indirect estimates at 10nm diameter using the nano-HTDMA measurements, and less acidic particles than observed by a thermal desorption chemical ionization mass spectrometer (TDCIMS) at 10-30nm. Possible explanations for these discrepancies are discussed.
  •  
2.
  • Keskinen, H., et al. (författare)
  • Evolution of Nanoparticle Composition in CLOUD in Presence of Sulphuric Acid, Ammonia and Organics
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 291-294
  • Konferensbidrag (refereegranskat)abstract
    • In this study, we investigate the composition of nucleated nanoparticles formed from sulphuric acid, ammonia, amines, and oxidised organics in the CLOUD chamber experiments at CERN. The investigation is carried out via analysis of the particle hygroscopicity (size range of 15-63 nm), ethanol affinity (15-50nm), oxidation state (<50 nm), and ion composition (few nanometers). The organic volume fraction of particles increased with an increase in particle diameter in presence of the sulphuric acid, ammonia and organics. Vice versa, the sulphuric acid volume fraction decreased when the particle diameter increased. The results provide information on the size-dependent composition of nucleated aerosol particles.
  •  
3.
  • Kim, J., et al. (författare)
  • Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:1, s. 293-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfuric acid, amines and oxidized organics have been found to be important compounds in the nucleation and initial growth of atmospheric particles. Because of the challenges involved in determining the chemical composition of objects with very small mass, however, the properties of the freshly nucleated particles and the detailed pathways of their formation processes are still not clear. In this study,we focus on a challenging size range, i.e., particles that have grown to diameters of 10 and 15 nm following nucleation, and measure their water uptake. Water uptake is useful information for indirectly obtaining chemical composition of aerosol particles. We use a nanometer-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) at sub-saturated conditions (ca. 90% relative humidity at 293 K) to measure the hygroscopicity of particles during the seventh Cosmics Leaving OUtdoor Droplets (CLOUD7) campaign performed at CERN in 2012. In CLOUD7, the hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from alpha-pinene oxidation. The hygroscopicity parameter kappa decreased with increasing particle size, indicating decreasing acidity of particles. No clear effect of the sulfuric acid concentration on the hygroscopicity of 10 nm particles produced from sulfuric acid and dimethylamine was observed, whereas the hygroscopicity of 15 nm particles sharply decreased with decreasing sulfuric acid concentrations. In particular, when the concentration of sulfuric acid was 5.1 x 10(6) molecules cm(-3) in the gas phase, and the dimethylamine mixing ratio was 11.8 ppt, the measured kappa of 15 nm particles was 0.31 +/- 0.01: close to the value reported for dimethylaminium sulfate (DMAS) (kappa(DMAS) similar to 0.28). Furthermore, the difference in kappa between sulfuric acid and sulfuric acid-dimethylamine experiments increased with increasing particle size. The kappa values of particles in the presence of sulfuric acid and organics were much smaller than those of particles in the presence of sulfuric acid and dimethylamine. This suggests that the organics produced from alpha-pinene ozonolysis play a significant role in particle growth even at 10 nm sizes.
  •  
4.
  • Yli-Juuti, T., et al. (författare)
  • Growth rates of nucleation mode particles in Hyytiala during 2003-2009 : variation with particle size, season, data analysis method and ambient conditions
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:24, s. 12865-12886
  • Tidskriftsartikel (refereegranskat)abstract
    • The condensational growth rate of aerosol particles formed in atmospheric new particle formation events is one of the most important factors influencing the lifetime of these particles and their ability to become climatically relevant. Diameter growth rates (GR) of nucleation mode particles were studied based on almost 7 yr of data measured during the years 2003-2009 at a boreal forest measurement station SMEAR II in Hyytiala, Finland. The particle growth rates were estimated using particle size distributions measured with a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA) and an Air Ion Spectrometer (AIS). Two GR analysis methods were tested. The particle growth rates were also compared to an extensive set of ambient meteorological parameters and trace gas concentrations to investigate the processes/constituents limiting the aerosol growth. The median growth rates of particles in the nucleation mode size ranges with diameters of 1.5-3 nm, 3-7 nm and 7-20 nm were 1.9 nm h(-1), 3.8 nm h(-1), and 4.3 nm h(-1), respectively. The median relative uncertainties in the growth rates due to the size distribution instrumentation in these size ranges were 25 %, 19 %, and 8 %, respectively. For the smallest particles (1.5-3 nm) the AIS data yielded on average higher growth rate values than the BSMA data, and higher growth rates were obtained from positively charged size distributions as compared with negatively charged particles. For particles larger than 3 nm in diameter no such systematic differences were found. For these particles the uncertainty in the growth rate related to the analysis method, with relative uncertainty of 16 %, was similar to that related to the instruments. The growth rates of 7-20 nm particles showed positive correlation with monoterpene concentrations and their oxidation rate by ozone. The oxidation rate by OH did not show a connection with GR. Our results indicate that the growth of nucleation mode particles in Hyytiala is mainly limited by the concentrations of organic precursors.
  •  
5.
  • Yli-Juuti, T., et al. (författare)
  • Model for acid-base chemistry in nanoparticle growth (MABNAG)
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:24, s. 12507-12524
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential mechanism lowering the equilibrium vapour pressures of organic compounds through dissociation in the particle phase and thus preventing their evaporation. MABNAG is a model for monodisperse aqueous particles and it couples dynamics of condensation to particle phase chemistry. Non-zero equilibrium vapour pressures, with both size and composition dependence, are considered for condensation. The model was applied for atmospherically relevant systems with sulfuric acid, one organic acid, ammonia, one amine and water in the gas phase allowed to condense on 3-20 nm particles. The effect of dissociation of the organic acid was found to be small under ambient conditions typical for a boreal forest site, but considerable for base-rich environments (gas phase concentrations of about 10(10) cm(-3) for the sum of the bases). The contribution of the bases to particle mass decreased as particle size increased, except at very high gas phase concentra-tions of the bases. The relative importance of amine versus ammonia did not change significantly as a function of particle size. While our results give a reasonable first estimate on the maximum contribution of salt formation to nanoparticle growth, further studies on, e. g. the thermodynamic properties of the atmospheric organics, concentrations of low-volatility organics and amines, along with studies investigating the applicability of thermodynamics for the smallest nanoparticles are needed to truly understand the acid-base chemistry of atmospheric nanoparticles.
  •  
6.
  • Bilde, M., et al. (författare)
  • Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures
  • 2015
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 115:10, s. 4115-4156
  • Forskningsöversikt (refereegranskat)abstract
    • There are a number of techniques that can be used that differ in terms of whether they fundamentally probe the equilibrium and the temperature range over which they can be applied. The series of homologous, straight-chain dicarboxylic acids have received much attention over the past decade given their atmospheric relevance, commercial availability, and low saturation vapor pressures, thus making them ideal test compounds. Uncertainties in the solid-state saturation vapor pressures obtained from individual methodologies are typically on the order of 50-100%, but the differences between saturation vapor pressures obtained with different methods are approximately 1-4 orders of magnitude, with the spread tending to increase as the saturation vapor pressure decreases. Some of the dicarboxylic acids can exist with multiple solid-state structures that have distinct saturation vapor pressures. Furthermore, the samples on which measurements are performed may actually exist as amorphous subcooled liquids rather than solid crystalline compounds, again with consequences for the measured saturation vapor pressures, since the subcooled liquid phase will have a higher saturation vapor pressure than the crystalline solid phase. Compounds with equilibrium vapor pressures in this range will exhibit the greatest sensitivities in terms of their gas to particle partitioning to uncertainties in their saturation vapor pressures, with consequent impacts on the ability of explicit and semiexplicit chemical models to simulate secondary organic aerosol formation.
  •  
7.
  • Hakkinen, S. A. K., et al. (författare)
  • Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:15, s. 7665-7682
  • Tidskriftsartikel (refereegranskat)abstract
    • The capability to accurately yet efficiently represent atmospheric nanoparticle growth by biogenic and anthropogenic secondary organics is a challenge for current atmospheric large-scale models. It is, however, crucial to predict nanoparticle growth accurately in order to reliably estimate the atmospheric cloud condensation nuclei (CCN) concentrations. In this work we introduce a simple semi-empirical parameterization for sub-20 nm particle growth that distributes secondary organics to the nanoparticles according to their size and is therefore able to reproduce particle growth observed in the atmosphere. The parameterization includes particle growth by sulfuric acid, secondary organics from monoterpene oxidation (SORG(MT)) and an additional condensable vapor of non-monoterpene organics (background). The performance of the proposed parameterization was investigated using ambient data on particle growth rates in three diameter ranges (1.5-3 nm, 3-7 nm and 7-20 nm). The growth rate data were acquired from particle / air ion number size distribution measurements at six continental sites over Europe. The longest time series of 7 yr (2003-2009) was obtained from a boreal forest site in Hyytiala, Finland, while about one year of data (2008-2009) was used for the other stations. The extensive ambient measurements made it possible to test how well the parameterization captures the seasonal cycle observed in sub-20 nm particle growth and to determine the weighing factors for distributing the SORG(MT) for different sized particles as well as the background mass flux (concentration). Besides the monoterpene oxidation products, background organics with a concentration comparable to SORGMT, around 6x10(7) cm(-3) (consistent with an additional global SOA yield of 100 Tg yr(-1)) was needed to reproduce the observed nanoparticle growth. Simulations with global models suggest that the background could be linked to secondary biogenic organics that are formed in the presence of anthropogenic pollution.
  •  
8.
  • Mohr, C., et al. (författare)
  • Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276. ; 44:6, s. 2958-2966
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10(-15) to 10(-6)mu gm(-3) (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10(-3) to 10(-2)mu gm(-3) (similar to 10(6)-10(7)moleculescm(-3)) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of similar to 5% to early stage particle growth from the similar to 60 gaseous dimer compounds. Plain Language Summary Atmospheric aerosol particles influence climate and air quality. We present new insights into how emissions of volatile organic compounds from trees are transformed in the atmosphere to contribute to the formation and growth of aerosol particles. We detected for the first time over a forest, a group of organic molecules, known to grow particles, in the gas phase at levels far higher than expected. Previous measurements had only measured them in the particles. This finding provides guidance on how models of aerosol formation and growth should describe their appearance and fate in the atmosphere.
  •  
9.
  • Buchholz, Angela, et al. (författare)
  • Insights into the O : C-dependent mechanisms controlling the evaporation of alpha-pinene secondary organic aerosol particles
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:6, s. 4061-4073
  • Tidskriftsartikel (refereegranskat)abstract
    • The volatility of oxidation products of volatile organic compounds (VOCs) in the atmosphere is a key factor to determine if they partition into the particle phase contributing to secondary organic aerosol (SOA) mass. Thus, linking volatility and measured particle composition will provide insights into SOA formation and its fate in the atmosphere. We produced alpha-pinene SOA with three different oxidation levels (characterized by average oxygen-to-carbon ratio; (O:C) over bar = 0.53, 0.69, and 0.96) in an oxidation flow reactor. We investigated the particle volatility by isothermal evaporation in clean air as a function of relative humidity (RH < 2 %, 40 %, and 80 %) and used a filter-based thermal desorption method to gain volatility and chemical composition information. We observed reduced particle evaporation for particles with increasing <(O:C )over bar> ratio, indicating that particles become more resilient to evaporation with oxidative aging. Particle evaporation was increased in the presence of water vapour and presumably particulate water; at the same time the resistance of the residual particles to thermal desorption was increased as well. For SOA with (O:C ) over bar = 0.96, the unexpectedly large increase in mean thermal desorption temperature and changes in the thermogram shapes under wet conditions (80 % RH) were an indication of aqueous phase chemistry. For the lower (O:C ) over bar cases, some water-induced composition changes were observed. However, the enhanced evaporation under wet conditions could be explained by the reduction in particle viscosity from the semi-solid to liquid-like range, and the observed higher desorption temperature of the residual particles is a direct consequence of the increased removal of high-volatility and the continued presence of low-volatility compounds.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy