SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yliperttula Marjo) "

Sökning: WFRF:(Yliperttula Marjo)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barreiro, Karina, et al. (författare)
  • Urinary extracellular vesicles : Assessment of pre-analytical variables and development of a quality control with focus on transcriptomic biomarker research
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.
  •  
2.
  • Linnankoski, Johanna, et al. (författare)
  • Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models
  • 2010
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0022-3549 .- 1520-6017. ; 99:4, s. 2166-2175
  • Tidskriftsartikel (refereegranskat)abstract
    • The paracellular space defines the passive permeation of hydrophilic compounds in epithelia. The goal of this study was to characterise the paracellular permeation pathway in the human intestinal wall and differentiated epithelial cell models (MDCKII, Caco-2 and 2/4/A1). The permeabilities of hydrophilic polyethylene glycols (PEG) were investigated in diffusion chambers, and mass spectrometry was used to obtain accurate concentrations for each PEG molecule. The paracellular porosity and the size of the pores in the membranes were estimated from the PEG permeability data using an effusion-based approach. The porosities were found to be low (fraction 10−7–10−5 of the epithelial surface) in all investigated membranes. Two different pore sizes (radii 5–6 and >10 Å) were detected in the human intestinal epithelium and the Caco-2 and MDCKII cells, while only one (about 15 Å) in the 2/4/A1 monolayer. The paracellular porosities of the human small intestine and 2/4/A1 monolayers were larger (>10−7) than that of the MDCKII and Caco-2 cells (<10−7). We report for the first time the quantitative values describing both porosity and pore size of the paracellular space in the human intestine. The cell models deviate from the small intestine either with respect to porosity (Caco-2, MDCKII) or pore size distribution (2/4/A1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy