SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yoder Jonilyn L) "

Sökning: WFRF:(Yoder Jonilyn L)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kannan, Bharath, et al. (författare)
  • Generating spatially entangled itinerant photons with waveguide quantum electrodynamics
  • 2020
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:41
  • Tidskriftsartikel (refereegranskat)abstract
    • Realizing a fully connected network of quantum processors requires the ability to distribute quantum entanglement. For distant processing nodes, this can be achieved by generating, routing, and capturing spatially entangled itinerant photons. In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide. In particular, we generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies. Using quadrature amplitude detection, we reconstruct the moments and correlations of the photonic modes and demonstrate state preparation fidelities of 84%. Our results provide a path toward realizing quantum communication and teleportation protocols using itinerant photons generated by quantum interference within a waveguide quantum electrodynamics architecture.
  •  
2.
  • Kannan, Bharath, et al. (författare)
  • Waveguide quantum electrodynamics with superconducting artificial giant atoms
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 583:7818, s. 775-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Models of light–matter interactions in quantum electrodynamics typically invoke the dipole approximation1,2, in which atoms are treated as point-like objects when compared to the wavelength of the electromagnetic modes with which they interact. However, when the ratio between the size of the atom and the mode wavelength is increased, the dipole approximation no longer holds and the atom is referred to as a ‘giant atom’2,3. So far, experimental studies with solid-state devices in the giant-atom regime have been limited to superconducting qubits that couple to short-wavelength surface acoustic waves4–10, probing the properties of the atom at only a single frequency. Here we use an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations. This system enables tunable atom–waveguide couplings with large on–off ratios3 and a coupling spectrum that can be engineered by the design of the device. We also demonstrate decoherence-free interactions between multiple giant atoms that are mediated by the quasi-continuous spectrum of modes in the waveguide—an effect that is not achievable using small atoms11. These features allow qubits in this architecture to switch between protected and emissive configurations in situ while retaining qubit–qubit interactions, opening up possibilities for high-fidelity quantum simulations and non-classical itinerant photon generation12,13.
  •  
3.
  •  
4.
  • Yan, Fei, et al. (författare)
  • Distinguishing coherent and thermal photon noise in a circuit quantum electrodynamical system
  • 2018
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 120:26
  • Tidskriftsartikel (refereegranskat)abstract
    • In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the ac Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and cross talk. Using a capacitively shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise-spectroscopy technique allows broad frequency access and readily applies to other qubit modalities for identifying general asymmetric nonclassical noise spectra.
  •  
5.
  • Kjaergaard, M., et al. (författare)
  • Demonstration of Density Matrix Exponentiation Using a Superconducting Quantum Processor
  • 2022
  • Ingår i: Physical Review X. - 2160-3308. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum computers hold the potential to outperform classical supercomputers at certain tasks. To implement algorithms on a quantum computer, programmers use conventional computers and hardware to create a set of classical control signals that implement a desired quantum algorithm. However, feeding the quantum information forward requires an inefficient conversion: extraction of quantum information, conversion to classical control signals, and reinjection of those signals into the system to implement quantum operations. Here, we demonstrate a more natively quantum strategy to programming quantum computers. Our approach uses the density matrix exponentiation (DME) protocol, a general technique for using a quantum state to enact a quantum operation. It can be thought of as a subroutine with which programmers can turn multiple copies of a quantum state into instructions for next steps in a quantum algorithm.We implement DME using two qubits in a superconducting quantum processor. Our implementation relies on a high-fidelity two-qubit gate and a novel technique called quantum measurement emulation to approximately reset a known quantum state. These developments enable us to demonstrate the DME protocol for the first time on a small-scale quantum processor and benchmark its performance.While DME was originally proposed in the context of a specific quantum machine-learning algorithm, it may also represent a fundamentally different approach to quantum programming. It allows the possibility of encoding quantum algorithms directly into quantum states and executing those algorithms on other quantum states, enabling a new class of efficient quantum algorithms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy