SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yordanova E.) "

Search: WFRF:(Yordanova E.)

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kilpua, E. K. J., et al. (author)
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions : Variation and Driver Dependence
  • 2019
  • In: Space Weather. - 1542-7390. ; 17:8, s. 1257-1280
  • Journal article (peer-reviewed)abstract
    • We present a statistical study of interplanetary conditions and geospace response to 89 coronal mass ejection-driven sheaths observed during Solar Cycles 23 and 24. We investigate in particular the dependencies on the driver properties and variations across the sheath. We find that the ejecta speed principally controls the sheath geoeffectiveness and shows the highest correlations with sheath parameters, in particular in the region closest to the shock. Sheaths of fast ejecta have on average high solar wind speeds, magnetic (B) field magnitudes, and fluctuations, and they generate efficiently strong out-of-ecliptic fields. Slow-ejecta sheaths are considerably slower and have weaker fields and field fluctuations, and therefore they cause primarily moderate geospace activity. Sheaths of weak and strong B field ejecta have distinct properties, but differences in their geoeffectiveness are less drastic. Sheaths of fast and strong ejecta push the subsolar magnetopause significantly earthward, often even beyond geostationary orbit. Slow-ejecta sheaths also compress the magnetopause significantly due to their large densities that are likely a result of their relatively long propagation times and source near the streamer belt. We find the regions near the shock and ejecta leading edge to be the most geoeffective parts of the sheath. These regions are also associated with the largest B field magnitudes, out-of-ecliptic fields, and field fluctuations as well as largest speeds and densities. The variations, however, depend on driver properties. Forecasting sheath properties is challenging due to their variable nature, but the dependence on ejecta properties determined in this work could help to estimate sheath geoeffectiveness through remote-sensing coronal mass ejection observations.
  •  
3.
  • Breuillard, H., et al. (author)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Journal article (peer-reviewed)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
4.
  • Dimmock, A. P., et al. (author)
  • Analysis of multiscale structures at the quasi-perpendicular Venus bow shock Results from Solar Orbiter's first Venus flyby
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 660
  • Journal article (peer-reviewed)abstract
    • Context. Solar Orbiter is a European Space Agency mission with a suite of in situ and remote sensing instruments to investigate the physical processes across the inner heliosphere. During the mission, the spacecraft is expected to perform multiple Venus gravity assist maneuvers while providing measurements of the Venusian plasma environment. The first of these occurred on 27 December 2020, in which the spacecraft measured the regions such as the distant and near Venus magnetotail, magnetosheath, and bow shock. Aims. This study aims to investigate the outbound Venus bow shock crossing measured by Solar Orbiter during the first flyby. We study the complex features of the bow shock traversal in which multiple large amplitude magnetic field and density structures were observed as well as higher frequency waves. Our aim is to understand the physical mechanisms responsible for these high amplitude structures, characterize the higher frequency waves, determine the source of the waves, and put these results into context with terrestrial bow shock observations. Methods. High cadence magnetic field, electric field, and electron density measurements were employed to characterize the properties of the large amplitude structures and identify the relevant physical process. Minimum variance analysis, theoretical shock descriptions, coherency analysis, and singular value decomposition were used to study the properties of the higher frequency waves to compare and identify the wave mode. Results. The non-planar features of the bow shock are consistent with shock rippling and/or large amplitude whistler waves. Higher frequency waves are identified as whistler-mode waves, but their properties across the shock imply they may be generated by electron beams and temperature anisotropies. Conclusions. The Venus bow shock at a moderately high Mach number (similar to 5) in the quasi-perpendicular regime exhibits complex features similar to the Earth's bow shock at comparable Mach numbers. The study highlights the need to be able to distinguish between large amplitude waves and spatial structures such as shock rippling. The simultaneous high frequency observations also demonstrate the complex nature of energy dissipation at the shock and the important question of understanding cross-scale coupling in these complex regions. These observations will be important to interpreting future planetary missions and additional gravity assist maneuvers.
  •  
5.
  • Carbone, F., et al. (author)
  • Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere : Solar Orbiter observations
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Journal article (peer-reviewed)abstract
    • Context. The recently released spacecraft potential measured by the RPW instrument on board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Aims. The measurement of the solar wind's electron density, taken in June 2020, has been analysed to obtain a thorough characterization of the turbulence and intermittency properties of the fluctuations. Magnetic field data have been used to describe the presence of ion-scale waves. Methods. To study and quantify the properties of turbulence, we extracted selected intervals. We used empirical mode decomposition to obtain the generalized marginal Hilbert spectrum, equivalent to the structure functions analysis, which additionally reduced issues typical of non-stationary, short time series. The presence of waves was quantitatively determined by introducing a parameter describing the time-dependent, frequency-filtered wave power. Results. A well-defined inertial range with power-law scalng was found almost everywhere in the sample studied. However, the Kolmogorov scaling and the typical intermittency effects are only present in fraction of the samples. Other intervals have shallower spectra and more irregular intermittency, which are not described by models of turbulence. These are observed predominantly during intervals of enhanced ion frequency wave activity. Comparisons with compressible magnetic field intermittency (from the MAG instrument) and with an estimate of the solar wind velocity (using electric and magnetic field) are also provided to give general context and help determine the cause of these anomalous fluctuations.
  •  
6.
  • Conroy-Beam, Daniel, et al. (author)
  • Assortative mating and the evolution of desirability covariation
  • 2019
  • In: Evolution and human behavior. - : Elsevier. - 1090-5138 .- 1879-0607. ; 40:5, s. 479-491
  • Journal article (peer-reviewed)abstract
    • Mate choice lies dose to differential reproduction, the engine of evolution. Patterns of mate choice consequently have power to direct the course of evolution. Here we provide evidence suggesting one pattern of human mate choice-the tendency for mates to be similar in overall desirability-caused the evolution of a structure of correlations that we call the d factor. We use agent-based models to demonstrate that assortative mating causes the evolution of a positive manifold of desirability, d, such that an individual who is desirable as a mate along any one dimension tends to be desirable across all other dimensions. Further, we use a large cross-cultural sample with n = 14,478 from 45 countries around the world to show that this d-factor emerges in human samples, is a cross-cultural universal, and is patterned in a way consistent with an evolutionary history of assortative mating. Our results suggest that assortative mating can explain the evolution of a broad structure of human trait covariation.
  •  
7.
  • Conroy-Beam, Daniel, et al. (author)
  • Contrasting Computational Models of Mate Preference Integration Across 45 Countries
  • 2019
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Journal article (peer-reviewed)abstract
    • Humans express a wide array of ideal mate preferences. Around the world, people desire romantic partners who are intelligent, healthy, kind, physically attractive, wealthy, and more. In order for these ideal preferences to guide the choice of actual romantic partners, human mating psychology must possess a means to integrate information across these many preference dimensions into summaries of the overall mate value of their potential mates. Here we explore the computational design of this mate preference integration process using a large sample of n = 14,487 people from 45 countries around the world. We combine this large cross-cultural sample with agent-based models to compare eight hypothesized models of human mating markets. Across cultures, people higher in mate value appear to experience greater power of choice on the mating market in that they set higher ideal standards, better fulfill their preferences in choice, and pair with higher mate value partners. Furthermore, we find that this cross-culturally universal pattern of mate choice is most consistent with a Euclidean model of mate preference integration.
  •  
8.
  • Dimmock, Andrew P., et al. (author)
  • Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework : Studying the Impacts of Spatial Resolution
  • 2021
  • In: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:5
  • Journal article (peer-reviewed)abstract
    • We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio-economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7-8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional-scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large-amplitude depressions were not captured, which caused the largest model-data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field.
  •  
9.
  • Dimmock, Andrew P., et al. (author)
  • The GIC and Geomagnetic Response Over Fennoscandia to the 7-8 September 2017 Geomagnetic Storm
  • 2019
  • In: Space Weather. - 1542-7390. ; 17:7, s. 989-1010
  • Journal article (peer-reviewed)abstract
    • Between 7 and 8 September 2017, Earth experienced extreme space weather events. We have combined measurements made by the IMAGE magnetometer array, ionospheric equivalent currents, geomagnetically induced current (GIC) recordings in the Finnish natural gas pipeline, and multiple ground conductivity models to study the Fennoscandia ground effects. This unique analysis has revealed multiple interesting physical and technical insights. We show that although the 7-8 September event was significant by global indices (Dst similar to 150 nT), it produced an unexpectedly large peak GIC. It is intriguing that our peak GIC did not occur during the intervals of largest geomagnetic depressions, nor was there any clear upstream trigger. Another important insight into this event is that unusually large and rare GIC amplitudes (>10 A) occurred in multiple Magnetic Local Time (MLT) sectors and could be associated with westward and eastward electrojets. We were also successfully able to model the geoelectric field and GIC using multiple models, thus providing a further important validation of these models for an extreme event. A key result from our multiple conductivity model comparison was the good agreement between the temporal features of 1-D and 3-D model results. This provides an important justification for past and future uses of 1-D models at Mantsala which is highly relevant to additional uses of this data set. Although the temporal agreement (after scaling) was good, we found a large (factor of 4) difference in the amplitudes between local and global ground models due to the difference in model conductivities. Thus, going forward, obtaining accurate ground conductivity values are key for GIC modeling.
  •  
10.
  • Eriksson, Elin, 1989-, et al. (author)
  • Electron Energization at a Reconnecting Magnetosheath Current Sheet
  • 2018
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:16, s. 8081-8090
  • Journal article (peer-reviewed)abstract
    • We present observations of electron energization within a sub-ion-scale magnetosheath current sheet (CS). A number of signatures indicate ongoing reconnection, including the thickness of the CS (similar to 0.7 ion inertial length), nonzero normal magnetic field, Hall magnetic fields with electrons carrying the Hall currents, and electron heating. We observe localized electron acceleration and heating parallel to the magnetic field at the edges of the CS. Electrostatic waves observed in these regions have low phase velocity and small wave potentials and thus cannot provide the observed acceleration and heating. Instead, we find that the electrons are accelerated by a parallel potential within the separatrix regions. Similar acceleration has been reported based on magnetopause and magnetotail observations. Thus, despite the different plasma conditions in magnetosheath, magnetopause, and magnetotail, the acceleration mechanism and corresponding heating of electrons is similar. Plain Language Summary Magnetic reconnection is an important physical energy conversion process in astrophysical and laboratory plasmas. The easiest place to analyze magnetic reconnection is in near-Earth space. Due to lack of sufficient electron resolution of previous spacecraft missions, there are many unanswered questions regarding electron heating and acceleration processes at small scales. In particular, the regime where thermal pressure dominates over magnetic pressure, the most common state of plasmas in the Universe, is little explored. In this letter we study such a regime using the four-spacecraft Magnetospheric Multiscale mission. We analyze a reconnecting current sheet in the magnetosheath. We show that electrons are energized by a parallel potential, similar to what has been observed in the different plasma regimes the magnetopause and magnetotail. Thus, despite different plasma conditions, a similar acceleration mechanism and corresponding heating of electrons is occurring in all these regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view