SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yoshida Akihiko) "

Sökning: WFRF:(Yoshida Akihiko)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Kao, Yu Chien, et al. (författare)
  • Identification of COL1A1/2 Mutations and Fusions With Noncoding RNA Genes in Bizarre Parosteal Osteochondromatous Proliferation (Nora Lesion)
  • 2023
  • Ingår i: Modern Pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. - : Elsevier BV. - 1530-0285. ; 36:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Bizarre parosteal osteochondromatous proliferation (BPOP) (Nora lesion) is a benign bone surface lesion, which most commonly occurs in the digits of young patients and has a high rate of recurrence. Histologically, it is composed of a mixture of disorganized bone, cartilage, and spindle cells in variable proportions and characterized by amorphous "blue bone" mineralization. Recurrent chromosomal abnormalities, including t(1;17)(q32-42;q21-23) and inv(7)(q21.1-22q31.3-32), have been reported in BPOP. However, the exact genes involved in the rearrangements remain unknown. In this study, we analyzed 8 BPOP cases affecting the fingers, toe, ulna, radius, and fibula of 5 female and 3 male patients, aged 5 to 68 years. RNA sequencing of 5 cases identified genetic fusions between COL1A2 and LINC-PINT in 3 cases and COL1A1::MIR29B2CHG fusion in 1, both validated using fluorescence in situ hybridization and reverse transcription (RT)-PCR. The remaining fusion-negative case harbored 3 COL1A1 mutations as revealed by whole-exome sequencing and confirmed using Sanger sequencing. All these genetic alterations were predicted to cause frameshift and/or truncation of COL1A1/2. The chromosomal locations of COL1A2 (7q21.3), LINC-PINT (7q32.3), COL1A1 (17q21.33), and MIR29B2CHG (1q32.2) were consistent with the breakpoints identified in the previous cytogenetic studies. Subsequent screening of 3 BPOPs using fluorescence in situ hybridization identified 1 additional case each with COL1A1 or COL1A2 rearrangement. Our findings are consistent with reported chromosomal abnormalities and implicate the disruption of type I collagen, and perhaps of either noncoding RNA gene as a tumor suppressor, in the tumorigenesis of BPOP. The prevalence and tumorigenic mechanisms of these COL1A1/2 alterations in BPOP require further investigation.
  •  
3.
  • Lantuejoul, Sylvie, et al. (författare)
  • PD-L1 Testing for Lung Cancer in 2019 : Perspective From the IASLC Pathology Committee
  • 2020
  • Ingår i: Journal of Thoracic Oncology. - : Elsevier BV. - 1556-0864 .- 1556-1380. ; 15:4, s. 499-519
  • Forskningsöversikt (refereegranskat)abstract
    • The recent development of immune checkpoint inhibitors (ICIs) has led to promising advances in the treatment of patients with NSCLC and SCLC with advanced or metastatic disease. Most ICIs target programmed cell death protein 1 (PD-1) or programmed death ligand 1 (PD-L1) axis with the aim of restoring antitumor immunity. Multiple clinical trials for ICIs have evaluated a predictive value of PD-L1 protein expression in tumor cells and tumor-infiltrating immune cells (ICs) by immunohistochemistry (IHC), for which different assays with specific IHC platforms were applied. Of those, some PD-L1 IHC assays have been validated for the prescription of the corresponding agent for first- or second-line treatment. However, not all laboratories are equipped with the dedicated platforms, and many laboratories have set up in-house or laboratory-developed tests that are more affordable than the generally expensive clinical trial-validated assays. Although PD-L1 IHC test is now deployed in most pathology laboratories, its appropriate implementation and interpretation are critical as a predictive biomarker and can be challenging owing to the multiple antibody clones and platforms or assays available and given the typically small size of samples provided. Because many articles have been published since the issue of the IASLC Atlas of PD-L1 Immunohistochemistry Testing in Lung Cancer, this review by the IASLC Pathology Committee provides updates on the indications of ICIs for lung cancer in 2019 and discusses important considerations on preanalytical, analytical, and postanalytical aspects of PD-L1 IHC testing, including specimen type, validation of assays, external quality assurance, and training.
  •  
4.
  • Mino-Kenudson, Mari, et al. (författare)
  • The International Association for the Study of Lung Cancer Global Survey on Programmed Death-Ligand 1 Testing for NSCLC
  • 2021
  • Ingår i: Journal of Thoracic Oncology. - : Elsevier. - 1556-0864 .- 1556-1380. ; 16:4, s. 686-696
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Programmed death-ligand 1 (PD-L1) immunohistochemistry (IHC) is required to determine the eligibility for pembrolizumab monotherapy in advanced NSCLC worldwide and for several other indications depending on the country. Four assays have been approved/Communaute Europeene-In vitro Diagnostic (CV-IVD)-marked, but PD-L1 IHC seems diversely implemented across regions and laboratories with the application of laboratory-developed tests (LDTs).Method: To assess the practice of PD-L1 IHC and identify issues and disparities, the International Association for the Study of Lung Cancer Pathology Committee conducted a global survey for pathologists from January to May 2019, comprising multiple questions on preanalytical, analytical, and postanalytical conditions.Result: A total of 344 pathologists from 64 countries participated with 41% from Europe, 24% from North America, and 18% from Asia. Besides biopsies and resections, cellblocks were used by 75% of the participants and smears by 11%. The clone 22C3 was most often used (69%) followed by SP263 (51%). They were applied as an LDT by 40% and 30% of the users, respectively, and 76% of the participants developed at least one LDT. Half of the participants reported a turnaround time of less than or equal to 2 days, whereas 13% reported that of greater than or equal to 5 days. In addition, quality assurance (QA), formal training for scoring, and standardized reporting were not implemented by 18%, 16%, and 14% of the participants, respectively.Conclusions: Heterogeneity in PD-L1 testing is marked across regions and laboratories in terms of antibody clones, IHC assays, samples, turnaround times, and QA measures. The lack of QA, formal training, and standardized reporting stated by a considerable minority identifies a need for additional QA measures and training opportunities.
  •  
5.
  • Moreira, Andre L., et al. (författare)
  • A Grading System for Invasive Pulmonary Adenocarcinoma : A Proposal From the International Association for the Study of Lung Cancer Pathology Committee
  • 2020
  • Ingår i: Journal of Thoracic Oncology. - : ELSEVIER SCIENCE INC. - 1556-0864 .- 1556-1380. ; 15:10, s. 1599-1610
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: A grading system for pulmonary adenocarcinoma has not been established. The International Association for the Study of Lung Cancer pathology panel evaluated a set of histologic criteria associated with prognosis aimed at establishing a grading system for invasive pulmonary adenocarcinoma. Methods: A multi-institutional study involving multiple cohorts of invasive pulmonary adenocarcinomas was conducted. A cohort of 284 stage I pulmonary adenocarcinomas was used as a training set to identify histologic features associated with patient outcomes (recurrence-free survival [RFS] and overall survival [OS]). Receiver operating characteristic curve analysis was used to select the best model, which was validated (n = 212) and tested (n = 300, including stage I-III) in independent cohorts. Reproducibility of the model was assessed using kappa statistics. Results: The best model (area under the receiver operating characteristic curve [AUC] = 0.749 for RFS and 0.787 for OS) was composed of a combination of predominant plus high-grade histologic pattern with a cutoff of 20% for the latter. The model consists of the following: grade 1, lepidic predominant tumor; grade 2, acinar or papillary predominant tumor, both with no or less than 20% of high-grade patterns; and grade 3, any tumor with 20% or more of high-grade patterns (solid, micropapillary, or complex gland). Similar results were seen in the validation (AUC = 0.732 for RFS and 0.787 for OS) and test cohorts (AUC = 0.690 for RFS and 0.743 for OS), confirming the predictive value of the model. Interobserver reproducibility revealed good agreement (k = 0.617). Conclusions: A grading system based on the predominant and high-grade patterns is practical and prognostic for invasive pulmonary adenocarcinoma. (C) 2020 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
  •  
6.
  •  
7.
  •  
8.
  • Saunois, Marielle, et al. (författare)
  • The Global Methane Budget 2000–2017
  • 2020
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 12:3, s. 1561-1623
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project.
  •  
9.
  • Sholl, Lynette, et al. (författare)
  • The Promises and Challenges of Tumor Mutation Burden as an Immunotherapy Biomarker : A Perspective from the International Association for the Study of Lung Cancer Pathology Committee
  • 2020
  • Ingår i: Journal of Thoracic Oncology. - : ELSEVIER SCIENCE INC. - 1556-0864 .- 1556-1380. ; 15:9, s. 1409-1424
  • Forskningsöversikt (refereegranskat)abstract
    • Immune checkpoint inhibitor (ICI) therapies have revolutionized the management of patients with NSCLC and have led to unprecedented improvements in response rates and survival in a subset of patients with this fatal disease. However, the available therapies work only for a minority of patients, are associated with substantial societal cost, and may lead to considerable immune-related adverse events. Therefore, patient selection must be optimized through the use of relevant biomarkers. Programmed death-ligand 1 protein expression by immunohistochemistry is widely used today for the selection of programmed cell death protein 1 inhibitor therapy in patients with NSCLC; however, this approach lacks robust sensitivity and specificity for predicting response. Tumor mutation burden (TMB), or the number of somatic mutations derived from next-generation sequencing techniques, has been widely explored as an alternative or complementary biomarker for response to ICIs. In theory, a higher TMB increases the probability of tumor neoantigen production and therefore, the likelihood of immune recognition and tumor cell killing. Although TMB alone is a simplistic surrogate of this complex interplay, it is a quantitative variable that can be relatively readily measured using currently available sequencing techniques. A large number of clinical trials and retrospective analyses, employing both tumor and blood-based sequencing tools, have evaluated the performance of TMB as a predictive biomarker, and in many cases reveal a correlation between high TMB and ICI response rates and progression-free survival. Many challenges remain before the implementation of TMB as a biomarker in clinical practice. These include the following: (1) identification of therapies whose response is best informed by TMB status; (2) robust definition of a predictive TMB cut point; (3) acceptable sequencing panel size and design; and (4) the need for robust technical and informatic rigor to generate precise and accurate TMB measurements across different laboratories. Finally, effective prediction of response to ICI therapy will likely require integration of TMB with a host of other potential biomarkers, including tumor genomic driver alterations, tumor-immune milieu, and other features of the host immune system. This perspective piece will review the current clinical evidence for TMB as a biomarker and address the technical sequencing considerations and ongoing challenges in the use of TMB in routine practice. (c) 2020 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.
  •  
10.
  • Thunnissen, Erik, et al. (författare)
  • Defining Morphologic Features of Invasion in Pulmonary Nonmucinous Adenocarcinoma With Lepidic Growth : A Proposal by the International Association for the Study of Lung Cancer Pathology Committee
  • 2023
  • Ingår i: Journal of Thoracic Oncology. - : Elsevier. - 1556-0864 .- 1556-1380. ; 18:4, s. 447-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Since the eight edition of the Union for In-ternational Cancer Control and American Joint Committee on Cancer TNM classification system, the primary tumor pT stage is determined on the basis of presence and size of the invasive components. The aim of this study was to identify histologic features in tumors with lepidic growth pattern which may be used to establish criteria for distinguishing invasive from noninvasive areas.Methods: A Delphi approach was used with two rounds of blinded anonymized analysis of resected nonmucinous lung adenocarcinoma cases with presumed invasive and nonin-vasive components, followed by one round of reviewer de-anonymized and unblinded review of cases with known outcomes. A digital pathology platform was used for measuring total tumor size and invasive tumor size. Results: The mean coefficient of variation for measuring total tumor size and tumor invasive size was 6.9% (range: 1.7%-22.3%) and 54% (range: 14.7%-155%), respectively, with substantial variations in interpretation of the size and location of invasion among pathologists. Following the presentation of the results and further discussion among members at large of the International Association for the Study of Lung Cancer Pathology Committee, extensive epithelial proliferation (EEP) in areas of collapsed lepidic growth pattern is recognized as a feature likely to be associated with invasive growth. The EEP is characterized by multilayered luminal epithelial cell growth, usually with high-grade cytologic features in several alveolar spaces.Conclusions: Collapsed alveoli and transition zones with EEP were identified by the Delphi process as morphologic features that were a source of interobserver variability. Definition criteria for collapse and EEP are proposed to improve reproducibility of invasion measurement.(c) 2022 International Association for the Study of Lung Cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (13)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Yoshida, Akihiko (10)
Chen, Gang (8)
Botling, Johan (8)
Thunnissen, Erik (8)
Pelosi, Giuseppe (8)
Noguchi, Masayuki (8)
visa fler...
Yatabe, Yasushi (8)
Lantuejoul, Sylvie (8)
Chung, Jin-Haeng (8)
Dacic, Sanja (8)
Mino-Kenudson, Mari (8)
Nicholson, Andrew G. (7)
Brambilla, Elisabeth (7)
Beasley, Mary Beth (7)
Poleri, Claudia (7)
Papotti, Mauro (6)
Bubendorf, Lukas (6)
Borczuk, Alain (6)
Tsao, Ming-Sound (6)
Chou, Teh-Ying (6)
Kerr, Keith M (6)
Roden, Anja C. (6)
Motoi, Noriko (6)
Minami, Yuko (6)
Lopez-Rios, Fernando (5)
Hirsch, Fred R (5)
Jain, Deepali (5)
Rekhtman, Natasha (5)
Hwang, David (5)
Moreira, Andre (4)
Wistuba, Ignacio I (4)
Travis, William D (4)
Cooper, Wendy A. (4)
Lin, Dongmei (4)
Travis, William (4)
Daigneault, Jillian ... (4)
Moreira, Andre L. (4)
Russell, Prudence A. (3)
Sholl, Lynette M. (3)
Sholl, Lynette (3)
Warth, Arne (3)
Frimmel, Hans (2)
Näppi, Janne (2)
Yoshida, Hiroyuki (2)
Longshore, John (2)
Okamura, Akihiko (2)
Longshore, John W. (2)
Duhig, Edwina (2)
Borczuk, Alain C. (2)
Hiroshima, Kenzo (2)
visa färre...
Lärosäte
Uppsala universitet (11)
Lunds universitet (3)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Teknik (3)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy