SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(You Qinglong) "

Sökning: WFRF:(You Qinglong)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cai, Ziyi, et al. (författare)
  • Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties
  • 2021
  • Ingår i: Journal of Climate. - 0894-8755. ; 34:12, s. 4871-4892
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near-surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near-surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread.
  •  
2.
  • Cai, Ziyi, et al. (författare)
  • Assessing Arctic wetting: Performances of CMIP6 models and projections of precipitation changes
  • 2024
  • Ingår i: Atmospheric Research. - 0169-8095. ; 297
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic region is experiencing a notable increase in precipitation, known as Arctic wetting, amidst the backdrop of Arctic warming. This phenomenon has implications for the Arctic hydrological cycle and numerous socio-ecological systems. However, the ability of climate models to accurately simulate changes in Arctic wetting has not been thoroughly assessed. In this study, we analyze total precipitation in the Arctic using station data, multiple reanalyses, and 35 models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). By employing the moisture budget equation and an evaluation method for model performance with ERA5 reanalysis as a reference, we evaluated the models' capability to reproduce past Arctic wetting patterns. Our findings indicate that most reanalyses and models are able to replicate Arctic wetting. However, the CMIP6 models generally exhibit an overestimation of Arctic wetting during the warm season and an underestimation during the cold season from 1979 to 2014 when compared to the ERA5 reanalysis. Further investigation reveals that the overestimation of wetting during the warm season is largest over the Arctic Ocean's northern part, specifically the Canadian Arctic Archipelago, and is associated with an overestimation of atmospheric moisture transport. Conversely, the models significantly underestimate wetting over the Barents-Kara Sea during the cold season, which can be attributed to an underestimation of evaporation resulting from the models' inadequate representation of sea ice reduction in that region. The models with the best performance in simulating historical Arctic wetting indicate a projected intensification of Arctic wetting, and optimal models significantly reduce uncertainties in future projections compared to the original models, particularly in the cold season and oceanic regions. Our study highlights significant biases in the CMIP6 models' simulation of Arctic precipitation, and improving the model's ability to simulate historical Arctic precipitation could reduce uncertainties in future projections.
  •  
3.
  • Kang, Shichang, et al. (författare)
  • Linking atmospheric pollution to cryospheric change in the Third Pole region : current progress and future prospects
  • 2019
  • Ingår i: National Science Review. - : Oxford University Press (OUP). - 2095-5138 .- 2053-714X. ; 6:4, s. 796-809
  • Forskningsöversikt (refereegranskat)abstract
    • The Tibetan Plateau and its surroundings are known as the Third Pole (TP). This region is noted for its high rates of glacier melt and the associated hydrological shifts that affect water supplies in Asia. Atmospheric pollutants contribute to climatic and cryospheric changes through their effects on solar radiation and the albedos of snow and ice surfaces; moreover, the behavior and fates within the cryosphere and environmental impacts of environmental pollutants are topics of increasing concern. In this review, we introduce a coordinated monitoring and research framework and network to link atmospheric pollution and cryospheric changes (APCC) within the TP region. We then provide an up-to-date summary of progress and achievements related to the APCC research framework, including aspects of atmospheric pollution's composition and concentration, spatial and temporal variations, trans-boundary transport pathways and mechanisms, and effects on the warming of atmosphere and changing in Indian monsoon, as well as melting of glacier and snow cover. We highlight that exogenous air pollutants can enter into the TP's environments and cause great impacts on regional climatic and environmental changes. At last, we propose future research priorities and map out an extended program at the global scale. The ongoing monitoring activities and research facilitate comprehensive studies of atmosphere-cryosphere interactions, represent one of China's key research expeditions to the TP and the polar regions and contribute to the global perspective of earth system science.
  •  
4.
  • Peng, Jian, et al. (författare)
  • Can We Use Satellite-Based FAPAR to Detect Drought?
  • 2019
  • Ingår i: Sensors (Basel, Switzerland). - : MDPI AG. - 1424-8220. ; 19:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought in Australia has widespread impacts on agriculture and ecosystems. Satellite-based Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) has great potential to monitor and assess drought impacts on vegetation greenness and health. Various FAPAR products based on satellite observations have been generated and made available to the public. However, differences remain among these datasets due to different retrieval methodologies and assumptions. The Quality Assurance for Essential Climate Variables (QA4ECV) project recently developed a quality assurance framework to provide understandable and traceable quality information for Essential Climate Variables (ECVs). The QA4ECV FAPAR is one of these ECVs. The aim of this study is to investigate the capability of QA4ECV FAPAR for drought monitoring in Australia. Through spatial and temporal comparison and correlation analysis with widely used Moderate Resolution Imaging Spectroradiometer (MODIS), Satellite Pour l'Observation de la Terre (SPOT)/PROBA-V FAPAR generated by Copernicus Global Land Service (CGLS), and the Standardized Precipitation Evapotranspiration Index (SPEI) drought index, as well as the European Space Agency's Climate Change Initiative (ESA CCI) soil moisture, the study shows that the QA4ECV FAPAR can support agricultural drought monitoring and assessment in Australia. The traceable and reliable uncertainties associated with the QA4ECV FAPAR provide valuable information for applications that use the QA4ECV FAPAR dataset in the future.
  •  
5.
  • You, Qinglong, et al. (författare)
  • Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives
  • 2020
  • Ingår i: Earth-Science Reviews. - : Elsevier BV. - 0012-8252. ; 210
  • Forskningsöversikt (refereegranskat)abstract
    • © 2020 Elsevier B.V. The Tibetan Plateau (TP) is also known as the “Third Pole”. Elevation dependent warming (EDW), the phenomenon that warming rate changes systematically with elevation, is of high significance for realistically estimating warming rates and their impacts over the TP. This review summarizes studies of characteristics and mechanisms behind EDW over the TP based on multiple observed datasets and model simulations. Spatial expression of EDW and explanatory mechanisms are still largely unknown because of the lack of suitable data over the TP. The focus is on the roles played by known mechanisms such as snow/ice-albedo feedback, cloud feedback, atmospheric water vapor feedback, aerosol feedback, and changes in land use, ozone and vegetation. At present, there is limited consensus on the main mechanisms controlling EDW. Finally, new perspectives and unresolved issues are outlined, including quantification of EDW in climate model simulations, explanation of the long-term EDW reconstructed from proxies, interaction between the Asian summer monsoon and EDW, importance of EDW for future environmental changes and water resources, and current gaps in understanding EDW over extremely high elevations. Further progress requires a more comprehensive ground observation network, greater use of remote sensing data, and high-resolution climate modeling with better representation of both atmospheric and cryospheric processes.
  •  
6.
  • Zhang, Jintao, et al. (författare)
  • Inequality of Global Thermal Comfort Conditions Changes in a Warmer World
  • 2023
  • Ingår i: Earth's Future. - 2328-4277. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in the thermal comfort condition of the living environment of human beings are one of the main concerns related to global warming. While previous studies largely focused on mean temperature and warm/cold extremes, changes in thermal comfort conditions (both comfort and discomfort conditions) have not been adequately revealed. Based on climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6), future thermal comfort conditions over global land using net effective temperature index that considers the aggregate effects of temperature, relative humidity, and wind on human thermal perception were investigated. The focus was on the projected changes in thermal comfort conditions in different regions based on gross domestic product per capita, an indicator of adaptive capacity. An inequitable impact of escalating global warming on thermal comfort conditions emerges: in high-income regions (mostly distributed in cool mid-high latitudes), a diminishing number of cold-uncomfortable days and an increasing number of comfort days collectively would contribute to an improvement in thermal comfort conditions; however, in low-income regions (mostly distributed in warmer low latitudes), thermal comfort conditions are expected to worsen as a result of a dramatic increase in the number of warm-uncomfortable days that greatly exceeds the decrease in the number of cold-uncomfortable days and a decrease in the number of comfortable days. Moreover, analysis accounting for population exposure suggests that the overall impact of future changes in thermal comfort conditions on the global population is negative. Therefore, prioritized support for climate mitigation and adaptation to developing nations is justified and urgently needed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy