SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younas Muhammad) "

Sökning: WFRF:(Younas Muhammad)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khan, Kifayatullah, et al. (författare)
  • Heavy Metal Occurrence, Pathways, and Associated Socio-ecological Risks in Riverine Water : Application of Geographic Information System, Multivariate Statistics, and Risk Assessment Models
  • 2023
  • Ingår i: Water, Air and Soil Pollution. - 0049-6979 .- 1573-2932. ; 234:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy metal (HM) pollution is one of the major issues of concern in the world due to its serious health consequences on humans and ecology. In this study, riverine water from the River Kabul in Pakistan was studied using inductively coupled plasma mass spectrometry (ICP-MS) to determine the variation, routes, and possible socio-ecological hazards of chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn) cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant HMs variation (p < 0.05) in the sequence of Cr > Zn > Ni > Cu > Cd > Pb > Mn > Co > Hg, indicating prevalent metal contaminations in the river. Multivariate statistics showed significant strong positive correlations (p ≤ 0.01) between the individual HMs contents along the monitoring sites. The strong-moderate levels of Cu, Co, Zn, Mn, Pb, and Cd in riverine systems were observed to be caused by surrounding industrial, agrochemicals, mining, and domestic wastewater discharges along with geogenic sources, the weak levels of Cr and Ni could be induced by erosion of mafic and ultramafic rocks, and mining activities, whereas the low contamination of Hg suggests minimal atmospheric deposition with fewer industrial discharges in the environment. The overall mass flux of the ∑HMs was estimated to be around 164.10 kg/year, with significant HM pollution index (HPI) and pollution index (PI) variations along the river characterizing the potential risk of HMs in decreasing order of Cd > Hg > Cr > Ni > Co > Pb > Mn > Cu > Zn and Cd > Hg > Ni > Pb > Cr > Co > Cu > Mn > Zn, respectively. Individual HM contamination was within the ecological risk threshold (ERI < 110), where, the chronic daily intake (CDIs), hazard quotients (HQs), health indices (HIs), and cancer risks (CRs) of Cd, Ni, Co, Cr, and Pb by daily riverine water ingestion and dermal contact posing considerable human health concerns. To protect the environment and public health, our findings suggest that untreated anthropogenic wastewater discharge into the river system be strictly controlled and regulated through public awareness campaigns and legislation prohibiting the use of herbicides and fertilizers containing high levels of Cr, Ni, Co, Cd, and Pb. 
  •  
2.
  • Khan, Kifayatullah, et al. (författare)
  • Heavy metals in five commonly consumed fish species from River Swat, Pakistan, and their implications for human health using multiple risk assessment approaches
  • 2023
  • Ingår i: Marine Pollution Bulletin. - 0025-326X .- 1879-3363. ; 195
  • Tidskriftsartikel (refereegranskat)abstract
    • This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25–101.33 mg/kg) > Mn (5.25–40.35 mg/kg) > Cr (3.05–14.59 mg/kg) > Ni (4.26–11.80 mg/kg) > Al (1.59–12.25 mg/kg) > Cu (1.24–8.59 mg/kg) > Pb (0.29–1.95 mg/kg) > Co (0.08–0.46 mg/kg) > Cd (0.01–0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (Ni Cr, Cu Cr, Pb Cr, Al Co, Cu Ni, and Pb Ni), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S. plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M. armatus > G. gotyla > T. macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10−6–10−4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.
  •  
3.
  • Khan, Kifayatullah, et al. (författare)
  • Heavy metal pollution in the soil of a riverine basin : distribution, source, and potential hazards
  • 2022
  • Ingår i: Environmental Monitoring & Assessment. - : Springer Science and Business Media LLC. - 0167-6369 .- 1573-2959. ; 194:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil pollution with heavy metals (HMs) has become a world environmental problem. This study focuses on surface soil contamination with Cr, Mn, Co, Ni, Cu, Zn, Cd, Hg, Pb, Fe, and Al, their sources, and potential hazards along the basin of River Swat, Pakistan. The average concentrations (mg/kg) of HMs were the most abundant for Al (24,730.19) followed by Fe (22,419.41) > Mn (386.78) > Zn (57.75) > Cr (38.07) > Ni (32.46) > Cu (23.43) > Pb (19.59) > Co (10.77) > Cd (3.18) > Hg (0.12). The concentrations of Cr and Mn in 5.45% each, Co in 10.90%, Zn in 27.27%, Cu in 36.36%, Ni in 41.81%, and Hg in 92.72% of the total soil samples exceeded their respective background values. The geostatistical approaches determined the distribution patterns of HM pollution along the basin, whereas the statistics of principal component analysis exposed the likely sources of HM contamination in the area. Pollution indices evaluated the overall HM distribution and pollution status in the area. Contamination factor showed a high degree of HM contamination in 82% of the total sampling sites, while the geo-accumulation index designated low to moderate contamination with Cr, Mn, Co, Ni, Cu, Zn, Hg, and Pb, and moderate to extreme contamination with Cd, Fe, and Al. The trend of ecological toxicity showed potential ups and downs along with the sites from low to considerable hazard (< 95 < PEHI < 190), whereas the human carcinogenic hazard was within the USEPA acceptable limits (1 x 10(-7)-1 x 10(-4)), but the non-carcinogenic hazard was higher than the threshold (HI > 1) for children because they are more exposed than adults.
  •  
4.
  • Khan, Kifayatullah, et al. (författare)
  • Population exposure to emerging perfluoroalkyl acids (PFAAs) via drinking water resources : Application of multivariate statistics and risk assessment models
  • 2024
  • Ingår i: Marine Pollution Bulletin. - 0025-326X .- 1879-3363. ; 203
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed the occurrence, origins, and potential risks of emerging perfluoroalkyl acids (PFAAs) for the first time in drinking water resources of Khyber Pakhtunkhwa, Pakistan. In total, 13 perfluoroalkyl carboxylic acids (PFCAs) with carbon (C) chains C4-C18 and 4 perfluoroalkyl sulfonates (PFSAs) with C chains C4-C10 were tested in both surface and ground drinking water samples using a high-performance liquid chromatography system (HPLC) equipped with an Agilent 6460 Triple Quadrupole liquid chromatography–mass spectrometry (LC–MS) system. The concentrations of ∑PFCAs, ∑PFSAs, and ∑PFAAs in drinking water ranged from 1.46 to 72.85, 0.30–8.03, and 1.76–80.88 ng/L, respectively. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) were the dominant analytes in surface water followed by ground water, while the concentration of perfluorobutane sulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), and perfluorododecanoic acid (PFDoDA) were greater than long-chain PFOA and PFOS. The correlation statistics, which showed a strong correlation (p < 0.05) between the PFAA analytes, potentially indicated the fate of PFAAs in the area's drinking water sources, whereas the hierarchical cluster analysis (HCA) and principal component analysis (PCA) statistics identified industrial, domestic, agricultural, and commercial applications as potential point and non-point sources of PFAA contamination in the area. From risk perspectives, the overall PFAA toxicity in water resources was within the ecological health risk thresholds, where for the human population the hazard quotient (HQ) values of individual PFAAs were < 1, indicating no risk from the drinking water sources; however, the hazard index (HI) from the ∑PFAAs should not be underestimated, as it may significantly result in potential chronic toxicity to exposed adults, followed by children.
  •  
5.
  • Younas, Muhammad Irfan, et al. (författare)
  • Toward QoS Monitoring in IoT Edge Devices Driven Healthcare : A Systematic Literature Review
  • 2023
  • Ingår i: Sensors. - : MDPI Multidisciplinary Digital Publishing Institute. - 1424-3210. ; 23:21, s. 1-33
  • Forskningsöversikt (refereegranskat)abstract
    • Smart healthcare is altering the delivery of healthcare by combining the benefits of IoT, mobile, and cloud computing. Cloud computing has tremendously helped the health industry connect healthcare facilities, caregivers, and patients for information sharing. The main drivers for implementing effective healthcare systems are low latency and faster response times. Thus, quick responses among healthcare organizations are important in general, but in an emergency, significant latency at different stakeholders might result in disastrous situations. Thus, cutting-edge approaches like edge computing and artificial intelligence (AI) can deal with such problems. A packet cannot be sent from one location to another unless the "quality of service" (QoS) specifications are met. The term QoS refers to how well a service works for users. QoS parameters like throughput, bandwidth, transmission delay, availability, jitter, latency, and packet loss are crucial in this regard. Our focus is on the individual devices present atdifferent levels of the smart healthcare infrastructure and the QoS requirements of the healthcare system as a whole. The contribution of this paper is five-fold: first, a novel pre-SLR method for comprehensive keyword research on subject-related themes for mining pertinent research papers for quality SLR; second, SLR on QoS improvement in smart healthcare apps; third a review of several QoS techniques used in current smart healthcare apps; fourth, the examination of the most important QoS measures in contemporary smart healthcare apps; fifth, offering solutions to the problems encountered in delivering QoS in smart healthcare IoT applications to improve healthcare services.
  •  
6.
  • Javed, Sana, et al. (författare)
  • Analytic approach to explore dynamical osteoporotic bone turnover
  • 2019
  • Ingår i: Advances in Difference Equations. - : Springer Science and Business Media LLC. - 1687-1839 .- 1687-1847.
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of the osteoporotic bone turnover is studied in this paper with the aid of stability analysis of the associated mathematical model. Osteoporosis, which is a common bone disorder, is studied in this papper in detail with an emphasis on the relative threshold values. We examine the expository signaling among the bone cells named osteoclast and osteoblast. Main functioning of osteoblasts is bone formation, whereas osteoclasts are bone removal cells. Mathematical framework for osteoporotic bone turnover comprising of the communication between osteoclasts and osteoblasts has been presented to exhibit the conditions for stability in bone turnover. The percentage ratios of the population of osteoblasts/osteoclasts have been determined via numerical simulations. The remedial upshots of targeting osteoporotic cells participating in such process are examined. From our analysis we have conclude that the role of external agents in treating the diseased bone can be better interpreted with the aid of a theoretical model.
  •  
7.
  • Younas, Umer, et al. (författare)
  • Antioxidant and Organic Dye Removal Potential of Cu-Ni Bimetallic Nanoparticles Synthesized Using Gazania rigens Extract
  • 2021
  • Ingår i: Water. - : MDPI. - 2073-4441. ; 13:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper-nickel bimetallic nanoparticles (Cu-Ni BNPs) were fabricated using an eco-friendly green method of synthesis. An extract of synthesized Gazania rigens was used for the synthesis of BNPs followed by characterization employing different techniques including UV/Vis spectrophotometer, FTIR, XRD, and SEM. Spectrophotometric studies (UV-Vis and FTIR) confirmed the formation of bimetallic nanoparticles. The SEM studies indicated that the particle size ranged from 50 to 100 nm. Analysis of the BNPs by the XRD technique confirmed the presence of both Cu and Ni crystal structure. The synthesized nanoparticles were then tested for their catalytic potential for photoreduction of methylene blue dye in an aqueous medium and DPPH radical scavenging in a methanol medium. The BNPs were found to be efficient in the reduction of methylene blue dye as well as the scavenging of DPPH free radicals such that the MB dye was completely degraded in just 17 min at the maximum absorption of 660 nm. Therefore, it is concluded that Cu-Ni BNPs can be successfully synthesized using Gazania rigens extract with suitable size and potent catalytic and radical scavenging activities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy