SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younis Shady) "

Sökning: WFRF:(Younis Shady)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Muhammad Akhtar, et al. (författare)
  • The transcriptional modulator ZBED6 regulates cell cycle and growth of human colorectal cancer cells
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The transcription factor ZBED6 is a repressor of IGF2 whose action impacts development, cell proliferation and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Transcriptome analyses revealed enrichment of cell cycle-related processes among differentially expressed genes in both cell lines. Chromatin immunoprecipitation sequencing analyses displayed enrichment of ZBED6 binding at genes upregulated in ZBED6-/- knockout clones. Ten differentially expressed genes were identified as putative direct gene targets and their downregulation by ZBED6 was experimentally validated. Eight of these genes were linked to the Wnt, Hippo, TGF-b, EGFR or PI3K pathways, all involved in colorectal cancer development. Ablation of ZBED6 affected the cell cycle and led to increased growth rate of ZBED6-/- RKO cells. These observations support a role for transcriptional modulation by ZBED6 in cell cycle regulation and growth of colorectal cancers.
  •  
2.
  • Ali, Muhammad Akhtar, et al. (författare)
  • Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:25, s. 7743-7748
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-beta, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.
  •  
3.
  • Carneiro, Miguel, et al. (författare)
  • Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6200, s. 1074-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.
  •  
4.
  • Chen, Junfeng, et al. (författare)
  • Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring
  • 2021
  • Ingår i: Communications Biology. - : Springer Nature. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The underlying molecular mechanisms that determine long day versus short day breeders remain unknown in any organism. Atlantic herring provides a unique opportunity to examine the molecular mechanisms involved in reproduction timing, because both spring and autumn spawners exist within the same species. Although our previous whole genome comparisons revealed a strong association of TSHR alleles with spawning seasons, the functional consequences of these variants remain unknown. Here we examined the functional significance of six candidate TSHR mutations strongly associated with herring reproductive seasonality. We show that the L471M missense mutation in the spring-allele causes enhanced cAMP signaling. The best candidate non-coding mutation is a 5.2kb retrotransposon insertion upstream of the TSHR transcription start site, near an open chromatin region, which is likely to affect TSHR expression. The insertion occurred prior to the split between Pacific and Atlantic herring and was lost in the autumn-allele. Our study shows that strongly associated coding and non-coding variants at the TSHR locus may both contribute to the regulation of seasonal reproduction in herring. Junfeng Chen et al. examine potential functional consequences of reproduction timing-associated TSHR alleles segregating in Atlantic herring. By comparing fish that spawn during the spring to those that spawn in the autumn, they find that the spring-allele is correlated with enhanced cAMP signaling and that both coding and non-coding variants in the TSHR locus contribute to seasonal reproduction.
  •  
5.
  • Darweesh, Mahmoud, et al. (författare)
  • ZC3H11A loss of function enhances NF-κB signaling through defective IκBα protein expression
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • ZC3H11A is a cellular protein associated with the transcription export (TREX) complex that is induced during heat-shock. Several nuclear-replicating viruses exploit the mRNA export mechanism of ZC3H11A protein for their efficient replication. Here we show that ZC3H11A protein plays a role in regulation of NF-kappa B signal transduction. Depletion of ZC3H11A resulted in enhanced NF-kappa B mediated signaling, with upregulation of numerous innate immune related mRNAs, including IL-6 and a large group of interferon-stimulated genes. IL-6 upregulation in the absence of the ZC3H11A protein correlated with an increased NF-kappa B transcription factor binding to the IL-6 promoter and decreased IL-6 mRNA decay. The enhanced NF-kappa B signaling pathway in ZC3H11A deficient cells correlated with a defect in I kappa B alpha inhibitory mRNA and protein accumulation. Upon ZC3H11A depletion The I kappa B alpha mRNA was retained in the cell nucleus resulting in failure to maintain normal levels of the cytoplasmic I kappa B alpha mRNA and protein that is essential for its inhibitory feedback loop on NF-kappa B activity. These findings indicate towards a previously unknown mechanism of ZC3H11A in regulating the NF-kappa B pathway at the level of IkB alpha mRNA export.
  •  
6.
  • Elksnis, Andris, et al. (författare)
  • Imatinib protects against human beta-cell death via inhibition of mitochondrial respiration and activation of AMPK
  • 2021
  • Ingår i: Clinical Science. - : Portland Press. - 0143-5221 .- 1470-8736. ; 135:19, s. 2243-2263
  • Tidskriftsartikel (refereegranskat)abstract
    • The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.
  •  
7.
  • Hill, Jason, et al. (författare)
  • Low Mutation Load in a Supergene Underpinning Alternative Male Mating Strategies in Ruff (Calidris pugnax)
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A paradox in evolutionary biology is how supergenes can maintain high fitness despite reduced effective population size, the suppression of recombination, and the expected accumulation of mutational load. The ruff supergene involves 2 rare inversion haplotypes (satellite and faeder). These are recessive lethals but with dominant effects on male mating strategies, plumage, and body size. Sequence divergence to the wild-type (independent) haplotype indicates that the inversion could be as old as 4 million years. Here, we have constructed a highly contiguous genome assembly of the inversion region for both the independent and satellite haplotypes. Based on the new data, we estimate that the recombination event(s) creating the satellite haplotype occurred only about 70,000 yr ago. Contrary to expectations for supergenes, we find no substantial expansion of repeats and only a modest mutation load on the satellite and faeder haplotypes despite high sequence divergence to the non-inverted haplotype (1.46%). The essential centromere protein N (CENPN) gene is disrupted by the inversion and is as well conserved on the inversion haplotypes as on the noninversion haplotype. These results suggest that the inversion may be much younger than previously thought. The low mutation load, despite recessive lethality, may be explained by the introgression of the inversion from a now extinct lineage.
  •  
8.
  • Jiang, Lin, et al. (författare)
  • ZBED6 Modulates the Transcription of Myogenic Genes in Mouse Myoblast Cells
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:4, s. e94187-
  • Tidskriftsartikel (refereegranskat)abstract
    • ZBED6 is a recently discovered transcription factor, unique to placental mammals, that has evolved from a domesticated DNA transposon. It acts as a repressor at the IGF2 locus. Here we show that ZBED6 acts as a transcriptional modulator in mouse myoblast cells, where more than 700 genes were differentially expressed after Zbed6-silencing. The most significantly enriched GO term was muscle protein and contractile fiber, which was consistent with increased myotube formation. Twenty small nucleolar RNAs all showed increased expression after Zbed6-silencing. The co-localization of histone marks and ZBED6 binding sites and the effect of Zbed6-silencing on distribution of histone marks was evaluated by ChIP-seq analysis. There was a strong association between ZBED6 binding sites and the H3K4me3, H3K4me2 and H3K27ac modifications, which are usually found at active promoters, but no association with the repressive mark H3K27me3. Zbed6-silencing led to increased enrichment of active marks at myogenic genes, in agreement with the RNA-seq findings. We propose that ZBED6 preferentially binds to active promoters and modulates transcriptional activity without recruiting repressive histone modifications.
  •  
9.
  • Kases, Katharina, et al. (författare)
  • The RNA-binding protein ZC3H11A interacts with the nuclear poly(A)-binding protein PABPN1 and alters polyadenylation of viral transcripts
  • 2023
  • Ingår i: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 299:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Nuclear mRNA metabolism is regulated by multiple proteins, which either directly bind to RNA or form multiprotein complexes. The RNA-binding protein ZC3H11A is involved in nuclear mRNA export, NF-kappa B signaling, and is essential during mouse embryo development. Furthermore, previous studies have shown that ZC3H11A is important for nuclear-replicating viruses. However, detailed biochemical characterization of the ZC3H11A protein has been lacking. In this study, we established the ZC3H11A protein interactome in human and mouse cells. We demonstrate that the nuclear poly(A)-binding protein PABPN1 interacts specifically with the ZC3H11A protein and controls ZC3H11A localization into nuclear speckles. We report that ZC3H11A specifically interacts with the human adenovirus type 5 (HAdV-5) capsid mRNA in a PABPN1dependent manner. Notably, ZC3H11A uses the same zinc finger motifs to interact with PABPN1 and viral mRNA. Further, we demonstrate that the lack of ZC3H11A alters the polyadenylation of HAdV-5 capsid mRNA. Taken together, our results suggest that the ZC3H11A protein may act as a novel regulator of polyadenylation of nuclear mRNA.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22
Typ av publikation
tidskriftsartikel (17)
annan publikation (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Younis, Shady (22)
Andersson, Leif (19)
Wallerman, Ola (5)
Welsh, Nils (5)
Essand, Magnus (3)
Bergsten, Peter (3)
visa fler...
Rubin, Carl-Johan (3)
Carneiro, Miguel (2)
Villafuerte, Rafael (2)
Ali, Muhammad Akhtar (2)
Gupta, Rajesh (2)
Rafati, Nima (2)
Sundström, Elisabeth (2)
Jiang, Lin (2)
Hinkula, Jorma (2)
Liu, Yang (1)
Pielberg, Gerli (1)
Andersson, Göran (1)
Lindblad-Toh, Kersti ... (1)
ten Dijke, Peter (1)
Pettersson, Mats (1)
Barrell, Daniel (1)
Ruffier, Magali (1)
Akusjärvi, Göran (1)
Albert, Frank W. (1)
Blanco-Aguiar, Jose ... (1)
Ferrand, Nuno (1)
Tengholm, Anders, 19 ... (1)
Alfoeldi, Jessica (1)
Di Palma, Federica (1)
Heiman, David (1)
Johnson, Jeremy (1)
Searle, Steve (1)
Turner-Maier, Jason (1)
Young, Sarah (1)
Lander, Eric S. (1)
Ali, Arwa (1)
Yu, Di, 1985- (1)
Jin, Chuan, 1986- (1)
Tobias Sjöblom, Tobi ... (1)
Sjoblöm, Tobias (1)
Enbody, Erik D (1)
Heldin, Carl-Henrik, ... (1)
Gupta, Soham (1)
Aken, Bronwen (1)
Wang, Li (1)
Fuentes-Pardo, Angel ... (1)
Widemo, Fredrik (1)
Afonso, Sandra (1)
Forsberg-Nilsson, Ka ... (1)
visa färre...
Lärosäte
Uppsala universitet (22)
Sveriges Lantbruksuniversitet (13)
Karolinska Institutet (2)
Stockholms universitet (1)
Linköpings universitet (1)
Språk
Engelska (22)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (14)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy