SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yu Liyang 1986) "

Sökning: WFRF:(Yu Liyang 1986)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hultmark, Sandra, 1994, et al. (författare)
  • Suppressing Co-Crystallization of Halogenated Non-Fullerene Acceptors for Thermally Stable Ternary Solar Cells
  • 2020
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 30:48
  • Tidskriftsartikel (refereegranskat)abstract
    • While photovoltaic blends based on non-fullerene acceptors are touted for their thermal stability, this type of acceptor tends to crystallize, which can result in a gradual decrease in photovoltaic performance and affects the reproducibility of the devices. Two halogenated indacenodithienothiophene-based acceptors that readily co-crystallize upon mixing are studied, which indicates that the use of an acceptor mixture alone does not guarantee the formation of a disordered mixture. The addition of the donor polymer to the acceptor mixture readily suppresses the crystallization, which results in a fine-grained ternary blend with nanometer-sized domains that do not coarsen due to a high Tg ≈ 200 °C. As a result, annealing at temperatures of up to 170 °C does not markedly affect the photovoltaic performance of ternary devices, in contrast to binary devices that suffer from acceptor crystallization in the active layer. The results indicate that the ternary approach enables the use of high-temperature processing protocols, which are needed for upscaling and high-throughput fabrication of organic solar cells. Further, ternary devices display a stable photovoltaic performance at 130 °C for at least 205 h, which indicates that the use of acceptor mixtures allows to fabricate devices with excellent thermal stability.
  •  
2.
  • Yu, Liyang, 1986, et al. (författare)
  • Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 American Chemical Society. Organic solar cells are thought to suffer from poor thermal stability of the active layer nanostructure, a common belief that is based on the extensive work that has been carried out on fullerene-based systems. We show that a widely studied non-fullerene acceptor, the indacenodithienothiophene-based acceptor ITIC, crystallizes in a profoundly different way as compared to fullerenes. Although fullerenes are frozen below the glass-transition temperature Tg of the photovoltaic blend, ITIC can undergo a glass-crystal transition considerably below its high Tg of ∼180 °C. Nanoscopic crystallites of a low-temperature polymorph are able to form through a diffusion-limited crystallization process. The resulting fine-grained nanostructure does not evolve further with time and hence is characterized by a high degree of thermal stability. Instead, above Tg, the low temperature polymorph melts, and micrometer-sized crystals of a high-temperature polymorph develop, enabled by more rapid diffusion and hence long-range mass transport. This leads to the same detrimental decrease in photovoltaic performance that is known to occur also in the case of fullerene-based blends. Besides explaining the superior thermal stability of non-fullerene blends at relatively high temperatures, our work introduces a new rationale for the design of bulk heterojunctions that is not based on the selection of high-Tg materials per se but diffusion-limited crystallization. The planar structure of ITIC and potentially other non-fullerene acceptors readily facilitates the desired glass-crystal transition, which constitutes a significant advantage over fullerenes, and may pave the way for truly stable organic solar cells.
  •  
3.
  • Cheng, Peirui, et al. (författare)
  • Highly Efficient Ruddlesden–Popper Halide Perovskite PA2MA4Pb5I16 Solar Cells
  • 2018
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 3:8, s. 1975-1982
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) Ruddlesden-Popper (RP) organic-inorganic perovskites have emerged as promising candidates for solar cells with technologically relevant stability. Herein, a new RP perovskite, the fifth member («n» = 5) of the (CH3(CH2)2NH3)2(CH3NH3)n-1PbnI3n+1 family (abbreviated as PA2MA4Pb5I16), was synthesized and systematically investigated in terms of photovoltaic application. The obtained pure PA2MA4Pb5I16 crystal exhibits a direct band gap of Eg = 1.85 eV. Systematic analysis on the solid film highlights the key role of the precursor-solvent interaction in the quantum well orientation, phase purity, grain size, surface quality, and optoelectronic properties, which can be well-tuned with addition of dimethyl sulfoxide (DMSO) into the N,N-dimethylformamide (DMF) precursor solution. These findings present opportunities for designing a high-quality RP film with well-controlled quantum well orientation, micrometer-sized grains, and optoelectronic properties. As a result, we achieved power conversion efficiency (PCE) up to 10.41%.
  •  
4.
  • He, Hans, 1989, et al. (författare)
  • Uniform doping of graphene close to the Dirac point by polymer-assisted assembly of molecular dopants
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered molecular arrays. However, such systems, demonstrated in ultra-high vacuum conditions (UHV), are often unstable in ambient conditions. Here we show that air-stable doping of epitaxial graphene on SiC—achieved by spin-coating deposition of 2,3,5,6-tetrafluoro-tetracyano-quino-dimethane (F4TCNQ) incorporated in poly(methyl-methacrylate)—proceeds via the spontaneous accumulation of dopants at the graphene-polymer interface and by the formation of a charge-transfer complex that yields low-disorder, charge-neutral, large-area graphene with carrier mobilities ~70 000 cm2V−1s−1at cryogenic temperatures. The assembly of dopants on 2D materials assisted by a polymer matrix, demonstrated by spin-coating wafer-scale substrates in ambient conditions, opens up a scalable technological route toward expanding the functionality of 2D materials.
  •  
5.
  • Hofmann, Anna, 1987, et al. (författare)
  • Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimide
  • 2018
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 6:26, s. 6905-6910
  • Tidskriftsartikel (refereegranskat)abstract
    • Doping of organic semiconductors is currently an intensely studied field, since it is a powerful tool to optimize the performance of various organic electronic devices, ranging from organic solar cells, to thermoelectric modules, and bio-medical sensors. Despite recent advances, there is still a need for the development of highly conducting polymer: dopant systems with excellent long term stability and a high resistance to elevated temperatures. In this work we study the doping of the polar polythiophene derivative p(g(4)2T-T) by various sulfonic acids and bistriflimide via different processing techniques. We demonstrate that simple co-processing of p(g(4)2T-T) with an acid dopant yields conductivities of up to 120 S cm(-1), which remain stable for more than six months under ambient conditions. Notably, a high conductivity is only achieved if the doping is carried out in air, which can be explained with a doping process that involves an acid mediated oxidation of the polymer through O-2. P(g(4)2T-T) doped with the non-toxic and inexpensive 1,3-propanedisulfonic acid was found to retain its electrical conductivity for at least 20 hours upon annealing at 120 degrees C, which allowed the bulk processing of the doped polymer into conducting, free-standing and flexible films and renders the di-acid a promising alternative to commonly used redox dopants.
  •  
6.
  • Hynynen, Jonna, 1987, et al. (författare)
  • Enhanced Electrical Conductivity of Molecularly p-Doped Poly(3-hexylthiophene) through Understanding the Correlation with Solid-State Order
  • 2017
  • Ingår i: Macromolecules. - : AMER CHEMICAL SOC. - 0024-9297 .- 1520-5835. ; 50:20, s. 8140-8148
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular p-doping of the conjugated polymer poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ) is a widely studied model system. Underlying structure property relationships are poorly understood because processing and doping are often carried out simultaneously. Here, we exploit doping from the vapor phase, which allows us to disentangle the influence of processing and doping. Through this approach, we are able to establish how the electrical conductivity varies with regard to a series of predefined structural parameters. We demonstrate that improving the degree of solid-state order, which we control through the choice of processing solvent and regioregularity, strongly increases the electrical conductivity. As a result, we achieve a value of up to 12.7 S cm(-2) for P3HT:F4TCNQ, We determine the F4TCNQ anion concentration and find that the number of (bound + mobile) charge carriers of about 10(-4) mol cm(-3) is not influenced by the degree of solid-state order. Thus, the observed increase in electrical conductivity by almost 2 orders of magnitude can be attributed to an increase in charge-carrier mobility to more than 10(-1) cm(2) V-1 s(-1). Surprisingly, in contrast to charge transport in undoped P3HT, we find that the molecular weight of the polymer does not strongly influence the electrical conductivity, which highlights the need for studies that elucidate structure property relationships of strongly doped conjugated polymers.
  •  
7.
  • Kiefer, David, 1989, et al. (författare)
  • A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics
  • 2017
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844 .- 2198-3844. ; 4:1, s. 1600203-
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.
  •  
8.
  • Kiefer, David, 1989, et al. (författare)
  • Double doping of conjugated polymers with monomer molecular dopants
  • 2019
  • Ingår i: Nature Materials. - : Springer Science and Business Media LLC. - 1476-4660 .- 1476-1122. ; 18:2, s. 149-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization efficiency of 100%. However, this theoretical limit is rarely achieved because of incomplete charge transfer and the presence of unreacted dopant. Here, we establish that common p-dopants can in fact accept two electrons per molecule from conjugated polymers with a low ionization energy. Each dopant molecule participates in two charge-transfer events, leading to the formation of dopant dianions and an ionization efficiency of up to 200%. Furthermore, we show that the resulting integer charge-transfer complex can dissociate with an efficiency of up to 170%. The concept of double doping introduced here may allow the dopant fraction required to optimize charge conduction to be halved.
  •  
9.
  • Koch, Felix Peter Vinzenz, et al. (författare)
  • The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study
  • 2013
  • Ingår i: Progress in Polymer Science. - : Elsevier BV. - 0079-6700. ; 38:12, s. 1978-1989
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic properties of organic semiconductors are often critically dependent upon their ability to order from the molecular level to the macro-scale, as is true for many other materials attributes of macromolecular matter such as mechanical characteristics. Therefore, understanding of the molecular assembly process and the resulting solid-state short- and long-range order is critical to further advance the field of organic electronics. Here, we will discuss the structure development as a function of molecular weight in thin films of a model conjugated polymer, poly(3-hexylthiophene) (P3HT), when processed from solution and the melt. While focus is on the microstructural manipulation and characterization, we also treat the influence of molecular arrangement and order on electronic processes such as charge transport and show, based on classical polymer science arguments, how accounting for the structural complexity of polymers can provide a basis for establishing relevant processing/structure/property-interrelationships to explain some of their electronic features. Such relationships can assist with the design of new materials and definition of processing protocols that account for the molecular length, chain rigidity and propensity to order of a given system.
  •  
10.
  • Kroon, Renee, 1982, et al. (författare)
  • Bulk Doping of Millimeter-Thick Conjugated Polymer Foams for Plastic Thermoelectrics
  • 2017
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 27:47
  • Tidskriftsartikel (refereegranskat)abstract
    • Foaming of plastics allows for extensive tuning of mechanical and physicochemical properties. Utilizing the foam architecture for plastic semiconductors can be used to improve ingression of external molecular species that govern the operation of organic electronic devices. In case of plastic thermoelectrics, utilizing solid semiconductors with realistic (millimeter (mm)-thick) dimensions does not permit sequential doping—while sequential doping offers the higher thermoelectric performance compared to other methods—because this doping methodology is diffusion limited. In this work, a fa brication process for poly(3-hexylthiophene) (P3HT) foams is presented, based on a combination of salt leaching and thermally induced phase separation. The obtained micro- and nanoporous architecture permits rapid and uniform doping of mm-thick foams with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, while thick solid P3HT structures suffer from protracted doping times and a dopant-depleted central region. Importantly, the thermoelectric performance of a P3HT foam is largely retained when normalized with regard to the quantity of used material.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (23)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (24)
Författare/redaktör
Müller, Christian, 1 ... (23)
Hultmark, Sandra, 19 ... (4)
Hynynen, Jonna, 1987 (4)
Sharma, A (2)
Kemerink, Martijn (2)
Sommer, Michael (2)
visa fler...
Langhammer, Christop ... (2)
Nugroho, Ferry, 1986 (2)
Baran, Derya (2)
Moons, Ellen, profes ... (2)
Eriksson, Lars (1)
Andersson, Mats, 196 ... (1)
Fahlman, Mats (1)
Nelson, J. (1)
Fabiano, Simone (1)
McCulloch, Iain (1)
Liu, Xianjie (1)
Primetzhofer, Daniel (1)
Lara Avila, Samuel, ... (1)
Gomez, A. (1)
Scaccabarozzi, Alber ... (1)
Heeney, Martin (1)
Caironi, Mario (1)
Kubatkin, Sergey, 19 ... (1)
Danilov, Andrey, 196 ... (1)
Moth-Poulsen, Kasper ... (1)
Zhang, Fengling, 196 ... (1)
Zhang, Fengling (1)
Inganas, Olle (1)
Malmberg, Per, 1974 (1)
Kumar Singh, Sandeep ... (1)
Yakimova, Rositsa (1)
Pourrahimi, Amir Mas ... (1)
Olsson, Eva, 1960 (1)
Hagström, Bengt (1)
Börjesson, Karl, 198 ... (1)
Wang, Ergang, 1981 (1)
Anthony, John E. (1)
Nilsson, Erik (1)
Li, Yongfang (1)
Rivnay, Jonathan (1)
Wang, Yang (1)
Bauch, Thilo, 1972 (1)
Lombardi, Floriana, ... (1)
Hagstrand, Per Ola (1)
Andersson, Mats, 196 ... (1)
Moule, Adam J (1)
Stranius, Kati (1)
Gao, Feng (1)
Davidson, E (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (24)
Linköpings universitet (5)
RISE (2)
Karlstads universitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
visa fler...
Stockholms universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Teknik (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy