SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yu Yong Bei) "

Sökning: WFRF:(Yu Yong Bei)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
2.
  • Ding, Xue Bing, et al. (författare)
  • Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease
  • 2021
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 411-418
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease (PD). However, there is no direct evidence in humans to support this role1–5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.
  •  
3.
  • Kalliomäki, Jarkko, et al. (författare)
  • Intrathecally applied morphine inhibits nociceptive C fiber input to the primary somatosensory cortex (SI) of the rat
  • 1998
  • Ingår i: Pain. - 0304-3959. ; 77:3, s. 323-329
  • Tidskriftsartikel (refereegranskat)abstract
    • Nociceptive C fiber input to SI in the halothane-nitrous oxide anesthetized rat was assessed by recording cortical field potentials evoked by noxious thermal cutaneous stimulation with CO2-laser pulses. Morphine topically applied onto the lumbar spinal cord produced a dose-dependent inhibition of nociceptive C fiber input from the hind paw to the contralateral SI. The inhibitory effect of morphine was reversed by naloxone. Potentials evoked by CO2-laser stimulation of the forepaw were unaffected by morphine applied on the lumbar cord, indicating that the effect of morphine was exerted at the segmental level. It is concluded that input from nociceptive C fibers to SI is relayed in the spinal cord and can be inhibited by spinal opioid receptor activation. The present method offers an interesting model of ascending nociceptive transmission to the cerebral cortex. Copyright (C) 1998 International Association for the Study of Pain. Published by Elsevier Science B.V.
  •  
4.
  • Kalliomäki, Jarkko, et al. (författare)
  • Multiple spinal pathways mediate cutaneous nociceptive C-fibre input to the primary somatosensory cortex (SI) in the rat.
  • 1993
  • Ingår i: Brain Research. - 1872-6240. ; 622:1-2, s. 271-279
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, partial lesions of the lower thoracic spinal cord in rats anaesthetized with halothane and nitrous oxide were made in order to elucidate which of the spinal funiculi mediate a nociceptive C fibre input to SI. Field potentials evoked by noxious CO2-laser stimulation were recorded in the left SI. Nociceptive C fibre input from the right hindpaw to SI was propagated by the dorsal funiculi (DF) and the left and right lateral funiculi (LLF and RLF, respectively). Nociceptive C fibre input from the left hindpaw was propagated by LLF and RLF, but not DF. Input from the hindpaws mediated by LLF and RLF caused widespread surface positive potentials throughout most of SI, although potentials in the hindlimb area tended to be larger than those in other areas of SI. Input from the right hindpaw mediated by DF caused surface positive potentials mainly in the hindlimb area of SI. Intracortically, the field potentials reversed polarity in the superficial laminae and had maximal negative amplitudes in laminae III-IV (input transferred by DF and LLF) and in laminae V-VI (input transferred by LLF and RLF). It is concluded that there are multiple spinal pathways which can transfer information from cutaneous nociceptive C fibres to SI in the rat. These ascending pathways seem to activate partly different thalamo-cortical systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy