SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yuan Chunhua) "

Sökning: WFRF:(Yuan Chunhua)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Jie, et al. (författare)
  • Sphenostylisins A-K : bioactive modified isoflavonoid constituents of the root bark of Sphenostylis marginata ssp. erecta
  • 2013
  • Ingår i: Journal of Organic Chemistry. - : American Chemical Society (ACS). - 0022-3263 .- 1520-6904. ; 78:20, s. 10166-10177
  • Tidskriftsartikel (refereegranskat)abstract
    • Sphenostylisins A-C (1-3), three complex dimeric compounds representing two novel carbon skeletons, along with an additional eight new compounds, sphenostylisins D-K (4-11), were isolated from the active chloroform-soluble extract of the root bark of Sphenostylis marginata ssp. erecta using a bioactivity-guided isolation approach. The structures were elucidated by means of detailed spectroscopic analysis, including NMR and HRESIMS analysis, and tandem MS fragmentation was utilized to further support the structures of 1-3. The absolute configuration of sphenostylisin C (3) was established by electronic circular dichroism analysis. Plausible biogenetic relationships between the modified isoflavonoids 1-11 are proposed, and a cyclization reaction of 9 was conducted to support one of the biogenetic proposals made. All of these pure isolates were evaluated against a panel of in vitro bioassays, and among the results obtained, sphenostylisin A (1) was found to be a very potent NF-κB inhibitor (IC50 = 6 nM).
  •  
2.
  • Liu, Fang, et al. (författare)
  • Quantitative proteomic analysis of gastric cancer tissue reveals novel proteins in platelet-derived growth factor B signaling pathway
  • 2017
  • Ingår i: Oncotarget. - : IMPACT JOURNALS LLC. - 1949-2553. ; 8:13, s. 22059-22075
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastric cancer is one of the most common cancers in Asian countries. Searching for reliable biomarkers involving the development of gastric cancer is important for clinical practice. Quantitative proteomics has become an important method contributed to the discovery of novel diagnostic or therapeutic targets for the management of cancer. Here, we identified differently expressed proteins in gastric cancer and normal gastric tissues by using the high resolution mass spectrometer. Among the total of 2280 identified proteins, 87 were differentially expressed between gastric cancer and normal gastric tissues. Notably, several significant proteins are in the PDGF-B signaling pathway, including peroxiredoxin5 (PRDX5), S100A6, calreticulin (CALR) and cathepsin D (CTSD), which were validated by western blot. Furthermore, upstream regulators including PDGF-B, PDGFR-beta, Akt, eIF4E and p70s6K were found significantly increased in the gastric cancer tissues. In addition, silencing of PRDX5 and PDGF-B suppressed the proliferation of gastric cancer cells in vitro. The administration of exogenous PDGF-BB recovered the reduced expression of PDGF-B signaling pathway in PDGF-B knockdown cells. Taken together, our findings suggested that PDGF-B signaling pathway plays an important role in the regulation of gastric cancer proliferation and the inhibition of this pathway may be a potential approach for treatment of gastric cancer.
  •  
3.
  • Qi, Xiaoying, et al. (författare)
  • High Throughput, Absolute Determination of the Content of a Selected Protein at Tissue Levels Using Quantitative Dot Blot Analysis (QDB)
  • 2018
  • Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :138
  • Tidskriftsartikel (refereegranskat)abstract
    • Lacking a convenient, quantitative, high throughput immunoblot method for absolute determination of the content of a specific protein at cellular and tissue level significantly hampers the progress in proteomic research. Results derived from currently available immunoblot techniques are also relative, preventing any efforts to combine independent studies with a large-scale analysis of protein samples. In this study, we demonstrate the process of quantitative dot blot analysis (QDB) to achieve absolute quantification in a high throughput format. Using a commercially available protein standard, we are able to determine the absolute content of capping actin protein, gelsolin-like (CAPG) in protein samples prepared from three different mouse tissues (kidney, spleen, and prostate) together with a detailed explanation of the experimental details. We propose the QDB analysis as a convenient, quantitative, high throughput immunoblot method of absolute quantification of individual proteins at the cellular and tissue level. This method will substantially aid biomarker validation and pathway verification in various areas of biological and biomedical research.
  •  
4.
  • Wei, Xiaodan, et al. (författare)
  • PDLIM5 identified by label-free quantitative proteomics as a potential novel biomarker of papillary thyroid carcinoma
  • 2018
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 499:2, s. 338-344
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to better understand the mechanisms underlying the development of papillary thyroid carcinoma (PTC), and to identify new potential biomarkers, high-resolution label-free mass spectrometry was performed on PTC tissues and adjacent normal thyroid tissues from six patients. In this process, 2788 proteins were identified, out of which 49 proteins presented significant differences between PTC tissues and adjacent normal thyroid tissues. Gene ontology revealed that the majority of these proteins are involved in the catalytic activity and binding. We selected three proteins with differential expressions: PDZ and LIM domain 5 (PDLIM5), PDLIM1 and ALDH1A1; Protein expressions were further verified by RT-PCR and western blot. Among these, expression of PDLIM5 and PDLIM1 was up-regulated, while that of ALDH1A1 was down-regulated in PTC tissues. Next, we confirmed their expression through quantitative dot blot (QDB) technique. We found that knockdown of PDLIM5 expression in the B-CPAP cell line could inhibit the migration, invasion and proliferation of PTC cells. In addition, PDLIM5 knockdown reduced Ras and Phospho-ERK1/2 expression. Thus, we suggested that PDLIM5 promotes PTC via activation of the Ras-ERK pathway. Our research provides new molecular insight into the function of PDLIM5, which may assist in studying the mechanism of PTC. In addition, PDLIM5 could be further explored as a potential candidate for PTC treatment.
  •  
5.
  • Zhang, Yuan, et al. (författare)
  • Quantitative Proteomics of TRAMP Mice Combined with Bioinformatics Analysis Reveals That PDGF-B Regulatory Network Plays a Key Role in Prostate Cancer Progression
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:7, s. 2401-2411
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice is a widely used transgenic animal model of prostate cancer (PCa). We performed a label-free quantitative proteomics analysis combined with a bioinformatics analysis on the entire prostate protein extraction from TRAMP mice and compared it with WT littermates. From 2379 total identified proteins, we presented a modest mice prostate reference proteome containing 919 proteins. 61 proteins presented a significant expression difference between two groups. The integrative bioinformatics analysis predicted the overexpression of platelet-derived growth factor B (PDGF-B) in tumor tissues and supports the hypothesis of the PDGF-B signaling network as a key upstream regulator in PCa progression. Furthermore, we demonstrated that Crenolanib, a novel PDGF receptor inhibitor, inhibited PCa cell proliferation in a dose-dependent manner. Finally, we revealed the importance of PDGF-B regulatory network in PCa progression, which will assist us in understanding the role and mechanisms of PDGF-B in promoting cancer growth and provide valuable knowledge for future research on anti-PDGF therapy.
  •  
6.
  • Zhu, Yanping, et al. (författare)
  • Identification of prothymosin alpha (PTMA) as a biomarker for esophageal squamous cell carcinoma (ESCC) by label-free quantitative proteomics and Quantitative Dot Blot (QDB)
  • 2019
  • Ingår i: Clinical Proteomics. - : BMC. - 1542-6416 .- 1559-0275. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Esophageal cancer (EC) is one of the malignant tumors with a poor prognosis. The early stage of EC is asymptomatic, so identification of cancer biomarkers is important for early detection and clinical practice.Methods: In this study, we compared the protein expression profiles in esophageal squamous cell carcinoma (ESCC) tissues and adjacent normal esophageal tissues from five patients through high-resolution label-free mass spectrometry. Through bioinformatics analysis, we found the differentially expressed proteins of ESCC. To perform the rapid identification of biomarkers, we adopted a high-throughput protein identification technique of Quantitative Dot Blot (QDB). Meanwhile, the QDB results were verified by classical immunohistochemistry.Results: In total 2297 proteins were identified, out of which 308 proteins were differentially expressed between ESCC tissues and normal tissues. By bioinformatics analysis, the four up-regulated proteins (PTMA, PAK2, PPP1CA, HMGB2) and the five down-regulated proteins (Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin) were selected and validated in ESCC by Western Blot. Furthermore, we performed the QDB and IHC analysis in 64 patients and 117 patients, respectively. The PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. Therefore, we suggest that PTMA might be a potential candidate biomarker for ESCC.Conclusion: In this study, label-free quantitative proteomics combined with QDB revealed that PTMA expression was up-regulated in ESCC tissues, and PTMA might be a potential candidate for ESCC. Since Western Blot cannot achieve rapid and high-throughput screening of mass spectrometry results, the emergence of QDB meets this demand and provides an effective method for the identification of biomarkers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy