SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yun Byung Wook) "

Sökning: WFRF:(Yun Byung Wook)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Al Azzawi, Tiba Nazar Ibrahim, et al. (författare)
  • Evaluation of Iraqi Rice Cultivars for Their Tolerance to Drought Stress
  • 2020
  • Ingår i: Agronomy. - : MDPI. - 2073-4395. ; 10:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Drought stress is a serious problem around the globe and particularly in the Republic of Iraq. Rice is the third most consumed crop for the Iraqi people; however, its cultivation and production is very low due to several challenges including drought. The current study was performed to evaluate five Iraqi rice cultivars along with relevant (drought-tolerant and drought-susceptible) controls under drought stress, either by treatment with 10% PEG (polyethylene glycol) or through water withholding to induce natural drought stress. The phenotypes of all the cultivars were evaluated and the transcriptional responses of key drought-responsive candidate genes, identified through the EST-SSR marker-based approach, were studied. We also studied transcript accumulation of drought-related transcriptional factors, such as OsGRASS23, OsbZIP12, and OsDREB2A. Moreover, the reference cultivars also included a drought-tolerant inter-specific cultivar Nerica 7 (a cross between Oryza sativa ssp. indica X O. glaberrima). Among the cultivars, the more drought-tolerant phenotypic characteristics and higher transcript accumulation of drought-related marker genes OsE647 and OsE1899 and transcriptional factors OsGRASS23, OsbZIP12, and OsDREB2A were observed in four (out of five) significantly drought-tolerant Iraqi cultivars; Mashkab, followed by Furat, Yasmen, and Amber 33. On another note, Amber Barka was found to be significantly drought susceptible. Mashkab and Amber Barka were found to be the most drought-tolerant and-susceptible cultivars, respectively. The identified tolerant cultivars may potentially serve as a genetic source for the incorporation of drought-tolerant phenotypes in rice.
  •  
3.
  • Asaf, Sajjad, et al. (författare)
  • Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose
  • 2017
  • Ingår i: Microbiology Research. - : Elsevier. - 0944-5013 .- 1618-0623. ; 205, s. 135-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Osmotic stress induced by drought can hinder the growth and yield of crop plants. To understand the eco-physiological role of osmoprotectants, the combined utilization of endophytes and osmolytes (trehalose) can be an ideal strategy used to overcome the adverse effects of drought. Hence, in the present study, we aimed to investigate the role of Sphingomonas sp. LK11, which produces phytohormones and synthesizes trehalose, in improving soybean plant growth under drought-induced osmotic stress (−0.4, −0.9, and −1.2 MPa). The results showed that the inoculation of soybean plants with Sphingomonas sp. LK11 significantly increased plant length, dry biomass, photosynthetic pigments, glutathione, amino acids (proline, glycine, and glutamate), and primary sugars as compared to control plants under varying drought stresses. Trehalose applied to the plant with or without endophyte-inoculation also showed similar plant growth-promoting attributes under stress. Stress exposure significantly enhanced endogenous jasmonic (JA) and abscisic (ABA) acid contents in control plants. In contrast, Sphingomonas sp. LK11-inoculation significantly lowered ABA and JA levels in soybean plants, but these phytohormones increased in response to combined treatments during stress. The drought-induced osmotic stress resistance associated with Sphingomonas sp. LK11 and trehalose was also evidenced by increased mRNA gene expression of soybean dehydration responsive element binding protein (DREB)-type transcription factors (GmDREBa and GmDREB2) and the MYB (myeloblastosis) transcription factor (GmMYBJ1) as compared to the control. In conclusion, our findings demonstrated that inoculation with this endophyte and trehalose improved the negative effects of drought-induced osmotic stress, and it enhanced soybean plant growth and tolerance.
  •  
4.
  • Asaf, Sajjad, et al. (författare)
  • The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species
  • 2017
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Oryza minuta, a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O. minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata. Thus, the complete O. minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.
  •  
5.
  • Bilal, Saqib, et al. (författare)
  • Endophytic microbial consortia of phytohormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regulates physio-hormonal changes to attenuate aluminum and zinc stresses
  • 2018
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The compatible microbial consortia containing fungal and bacterial symbionts acting synergistically are applied to improve plant growth and eco-physiological responses in extreme crop growth conditions. However, the interactive effects of phytohormones-producing endophytic fungal and bacterial symbionts plant growth and stress tolerance under heavy metal stress have been least known. In the current study, the phytohormones-producing endophytic Paecilomyces formosus LHL10 and Sphingomonas sp. LK11 revealed potent growth and tolerance during their initial screening against combined Al and Zn (2.5 mM each) stress. This was followed with their co-inoculation in the Al- and Zn-stressed Glycine max L. plants, showing significantly higher plant growth attributes (shoot/root length, fresh/dry weight, and chlorophyll content) than the plants solely inoculated with LHL10 or LK11 and the non-inoculated (control) plants under metal stresses. Interestingly, under metal stress, the consortia exhibited lower metal uptake and inhibited metal transport in roots. Metal-induced oxidative stresses were modulated in co-inoculated plants through reduced hydrogen peroxide, lipid peroxidation, and antioxidant enzymes (catalase and superoxide dismutase) in comparison to the non-inoculated plants. In addition, endophytic co-inoculation enhanced plant macronutrient uptake (P, K, S, and N) and modulated soil enzymatic activities under stress conditions. It significantly downregulated the expression of heavy metal ATPase genes GmHMA13, GmHMA18, GmHMA19, and GmPHA1 and upregulated the expression of an ariadne-like ubiquitin ligase gene GmARI1 under heavy metals stress. Furthermore, the endogenous phytohormonal contents of co-inoculated plants revealed significantly enhanced gibberellins and reduced abscisic acid and jasmonic acid contents, suggesting that this endophytic interaction mitigated the adverse effect of metal stresses in host plants. In conclusion, the co-inoculation of the endophytic fungus LHL10 and bacteria LK11 actively contributed to the tripartite mutualistic symbiosis in G. max under heavy metal stresses; this could be used an excellent strategy for sustainable agriculture in the heavy metal-contaminated fields.
  •  
6.
  •  
7.
  • Falak, Noreen, et al. (författare)
  • Transcription Factors as the "Blitzkrieg" of Plant Defense : A Pragmatic View of Nitric Oxide's Role in Gene Regulation
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:2
  • Forskningsöversikt (refereegranskat)abstract
    • Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.
  •  
8.
  • Hussain, Adil, et al. (författare)
  • CRISPR/Cas9-mediated gene editing in grain crops
  • 2020
  • Ingår i: Recent Advances in Grain Crops Research. - : IntechOpen. - 9781789854503 - 9781789854497 - 9781789856439 ; , s. 1-12
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The development of reliable and efficient techniques for making precise targeted changes in the genome of living organisms has been a long-standing objective of researchers throughout the world. In plants, different methods, each with several different variations, have been developed for this purpose, though many of them are hampered either by providing only temporary modification of gene function or unpredictable off-target results. The recent discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated 9 (Cas9) nucleases started a new era in genome editing. Basically, the CRISPR/Cas system is a natural immune response of prokaryotes to resist foreign genetic elements entering via plasmids and phages. Through this naturally occurring gene editing system, bacteria create DNA segments known as CRISPR arrays that allow them to "remember" foreign genetic material for protection against it and other similar sequences in the future. This system has now been adopted by researchers in laboratory to create a short guide RNA that binds to specific target sequences of DNA in eukaryotic genome, and the Cas9 enzyme cuts the DNA at the targeted location. Once cut, the cell's endogenous DNA repair machinery is used to add, delete, or replace pieces of genetic material. Though CRISPR/Cas9 technology has been recently developed, it has started to be regularly used for gene editing in plants as well as animals to good success. It has been proved as an efficient transgene-free technique. A simple search on PubMed (NCBI) shows that among all plants, 80 different studies published since 2013 involved CRISPR/Cas9-mediated genome editing in rice. Of these, 20, 13, and 24 papers have been published in 2019, 2018, and 2017, respectively. Furthermore, 20 different studies published since 2014 utilized CRISPR/Cas9 system for gene editing in wheat, where five of these studies were published in 2019 and seven were published in 2018. Genomes of other grain crops edited through this technique include maize, sorghum, barley, etc. This indicates the high utility of this technique for gene editing in grain crops. Here we emphasize on CRISPR/Cas9-mediated gene editing in rice, wheat, and maize.
  •  
9.
  • Hussain, Adil, et al. (författare)
  • Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana
  • 2016
  • Ingår i: Frontiers in Plant Science. - : Frontiers Media S.A.. - 1664-462X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.
  •  
10.
  • Hussain, Adil, et al. (författare)
  • Nitric oxide synthase in the plant kingdom
  • 2021
  • Ingår i: Nitric oxide in plant biology. - : Elsevier. - 9780128187975 ; , s. 43-52
  • Bokkapitel (refereegranskat)abstract
    • After the discovery of nitric oxide (NO) as an important signaling molecule in plants, its involvement has been reported in several key physiological processes. At the cellular level, slight alterations in the quantity of NO or its various adducts, also known as reactive nitrogen intermediates (RNIs), have phenomenal implications. In plants this highly reactive, diatomic gaseous molecule regulates a plethora of physiological processes ranging from development, to reproduction, and defense against biotic and abiotic stresses. In animals, NO is produced enzymatically via the nitric oxide synthase (NOS) enzyme. However, after decades of research, it is now clear that in plants there is not one but several routes for NO production. Interestingly the discovery of a NOS enzyme in plants has remained an attractive topic of research for plant scientists over the years; the enzyme still remains elusive. In this chapter we briefly discuss the different pathways responsible for NO production in plants with special emphasis on the enzymatic production. We also discuss the NOS enzyme and its presence in lower and higher plants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy