SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zäll Erik) "

Sökning: WFRF:(Zäll Erik)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Auroux, Etienne, et al. (författare)
  • Evidence and Effects of Ion Transfer at Active-Material/Electrode Interfaces in Solution-Fabricated Light-Emitting Electrochemical Cells
  • 2021
  • Ingår i: Advanced Electronic Materials. - : Wiley-Blackwell Publishing Inc.. - 2199-160X. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The light-emitting electrochemical cell (LEC) allows for energy- and cost-efficient printing and coating fabrication of its entire device structure, including both electrodes and the single-layer active material. This attractive fabrication opportunity is enabled by the electrochemical action of mobile ions in the active material. However, a related and up to now overlooked issue is that such solution-fabricated LECs commonly comprise electrode/active-material interfaces that are open for transfer of the mobile ions, and it is herein demonstrated that a majority of the mobile anions in a common spray-coated active material can transfer into a spray-coated poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) positive electrode during LEC operation. Since it is well established that the mobile ion concentration in the active material has a profound influence on the LEC performance, this significant ion transfer is an important factor that should be considered in the design of low-cost LEC devices that deliver high performance.
  •  
2.
  • Karlsson, Stefan, 1984-, et al. (författare)
  • Antireflektiv beläggning i världsklass ger effektivare solfångare
  • 2023
  • Ingår i: GLAS. ; :4, s. 36-37
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • I ett nyligen avslutat forskningsprojekt har Absolicon Solar Collector tillsammans med RISE Research Institutes of Sweden och Umeå universitet utvecklat en ny toppmodern antireflektiv beläggning som kan göra Absolicons solfångare än mer effektiva. Nu siktar man på ett nytt projekt för att skala upp metoden.
  •  
3.
  • Zäll, Erik, et al. (författare)
  • Aerosol-based deposition of broadband antireflective silica coating with closed mesoporous structure
  • 2023
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 250, s. 112078-112078
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy will be a crucial part of the sustainable, fossil free energy production of the future. A majority of this will be produced by solar collectors and photovoltaics. Important for the efficient utilization of the incident solar energy for both technologies are a cover glass with antireflective coatings giving it a high solar transmittance. In the current paper we describe the development of antireflective mesoporous silica coatings on low-iron float glass using the aerosol-based nFOG™ deposition technique. The coatings exhibit a hexagonal and closed pore structure, high smoothness, superhydrophilic properties (contact angle <5°) and consistent thicknesses of approximately 110 nm. This is in line with optimal thickness determined from simulations of the antireflective behavior. Low-iron float glass coated on both sides show a highly reproducible solar weighted transmittance of 95% in the wavelength range 300–2500 nm and an antireflective effect increasing with incident angle. The smoothness, closed pores and low contact angle indicate a high cleanability, which in combination with the high transmittance render a competitive broadband antireflective coating well adapted for solar glass applications.
  •  
4.
  • Zäll, Erik, et al. (författare)
  • Aerosol-based deposition of broadband antireflective silica coating withclosed mesoporous structure
  • 2023
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 250, s. 112078-
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar energy will be a crucial part of the sustainable, fossil free energy production of the future. Amajority of this will be produced by solar collectors and photovoltaics. Important for the efficientutilization of the incident solar energy for both technologies are a cover glass with antireflectivecoatings giving it a high solar transmittance. In the current paper we describe the development ofantireflective mesoporous silica coatings on low-iron float glass using the aerosol-based nFOGTMdeposition technique. The coatings exhibit a hexagonal and closed pore structure, a high smoothness,and consistent thicknesses of approximately 110 nm. This is in line with optimal thicknessesdetermined from simulations of the antireflective behavior. Low-iron float glass coated on both sidesshow a highly reproducible solar weighted transmittance of 95 % in the wavelength range 300-2500nm and an antireflective effect increasing with incident angle. The smoothness and closed poresassociated with high cleanability, as well as high transmittance makes it a competitive broadbandantireflective coating well adapted for solar glass applications.
  •  
5.
  • Zäll, Erik, et al. (författare)
  • Durability of antireflective SiO2 coatings with closed pore structure
  • 2023
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier. - 0927-0248 .- 1879-3398. ; 261
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of antireflective coatings to increase the transmittance of the cover glass is a central aspect of achieving high efficiencies for solar collectors and photovoltaics alike. Considering an expected lifetime of 20–30 years for solar energy installations, the durability of the antireflective surfaces is essential. Here, a novel antireflective SiO2 coating with a hexagonally ordered closed pore structure, produced with an aerosol-based sol-gel method is benchmarked against two commercial coatings; produced with acid etching and sol-gel roll coating. The optical and mechanical properties together with contact angle characteristics were evaluated before and after various durability tests, including climate chamber tests, outdoor exposure, and abrasion. Compared to the commercial antireflective coatings with open pore structures, the novel coating performed in parity, or better, in all tests. Based on the results of humidity freeze and industrial climate chamber tests, it appears that the coating with closed pore structure has a better ability to prevent water adsorption. Additionally, the closed pore structure of the coating seems to minimize the accumulation of dirt and deposits. The abrasion and cleanability test further confirm the advantages of a closed pore structure, showcasing the coating's mechanical durability. While the coatings exhibit similar hardness and reduced elastic modulus, the closed pore coating proves to be even harder after undergoing the industrial climate chamber test, but also slightly more brittle, as indicated by the probability of crack initiation. In summary the closed pore structure is well suited for tempered and arid climates, making it a truly competitive alternative to existing antireflective coatings.
  •  
6.
  • Zäll, Erik, et al. (författare)
  • Electroplating of selective surfaces for concentrating solar collectors
  • 2018
  • Ingår i: PROCEEDINGS OF THE ISES EUROSUN 2018 CONFERENCE - 12TH INTERNATIONAL CONFERENCE ON SOLAR ENERGY FOR BUILDINGS AND INDUSTRY. - Freiburg, Germany : International Solar Energy Society. - 9783982040806 ; , s. 1086-1095
  • Konferensbidrag (refereegranskat)abstract
    • A spectrally selective surface is produced by electrodeposition of a Co-Cr coating on a stainless steel substrate. The plating bath consisted of CrCl3 center dot 6H(2)O and CoCl2 center dot 6H(2)O dissolved in a deep eutectic solvent (DES) of choline chloride and ethylene glycol. This DES enables the use of trivalent (Cr(III)) instead of hexavalent chromium (Cr(XI)) which significantly reduces health risks associated with chromium electroplating. The selective surface exhibits an absorptance (alpha) of 0.96 and an emittance (epsilon) of 0.13 at 100 degrees C making it well adapted for mid- to lowtemperature concentrating solar collectors. The 1.8 mu m thick coating exhibits a porous structure on the surface as well as throughout the entire coating. The surface of the coating comprises of Co oxides and hydroxides, while the bulk consists of metallic and oxidized Co and only small fractions of Cr compounds. Initial tests of the thermal stability indicate that the coating does not maintain optical properties at an acceptable level over a lifetime of 25 years. At approximately 438 degrees C significant parts of the coating is oxidized in an oxygen rich environment.
  •  
7.
  • Zäll, Erik, et al. (författare)
  • Environmentally sustainable electroplating of selective cobalt-chromium coating on stainless steel for efficient solar collectors
  • 2022
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier. - 0927-0248 .- 1879-3398. ; 245
  • Tidskriftsartikel (refereegranskat)abstract
    • Half of today's global energy consumption is in the form of heating and cooling. Solar collectors are the most promising sustainable alternative to fossil fuels in this sector. The most important component in a solar collector is the receiver, which by use of a selective surface absorbs and converts solar irradiance to thermal energy. Herein, a novel selective surface for low-to mid-temperature solar collectors is developed, studied and presented. The surface is produced by electroplating a cobalt-chromium coating on a stainless steel substrate using an electrolyte based on a deep eutectic solvent. Our method makes use of trivalent instead of traditionally used hexavalent chromium, which significantly reduces health-related issues and makes it more environmentally benign. We obtain a coating of chromium doped cobalt where the surface exhibits an absorptance and emittance of 0.96 and 0.14, respectively, giving it a solar-to-thermal efficiency of 0.95. An observed loss in optical efficiency, is shown to correlate to an oxidation of the metallic cobalt to Co3O4 at elevated temperatures. We further show that this oxidation can be mitigated by dip-coating a protective silica top coating, which concurrently improves the optical selectivity of the surface. The present selective surface is efficient, cheap, scalable, and easy to produce sustainably, making it competitive to industry standards. We foresee that our method will have impact on the advancement of improved low-to mid-temperature solar collectors, assisting a faster transition towards a sustainable society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy