SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zöckler Christoph) "

Sökning: WFRF:(Zöckler Christoph)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callaghan, Terry V., et al. (författare)
  • Biodiversity, distributions and adaptations of arctic species in the context of environmental change
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 404-417
  • Forskningsöversikt (refereegranskat)abstract
    • The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well adapted to the Arctics climate: some can metabolize at temperatures down to -39degreesC. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.
  •  
2.
  • Callaghan, Terry V., et al. (författare)
  • Climate Change and UV-B Impacts on Arctic Tundra and Polar Desert Ecosystems: Key Findings and Extended Summaries
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 386-392
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has become an important region in which to assess the impacts of current climate variability and amplification of projected global warming. This is because i) the Arctic has experienced considerable warming in recent decades (an average of about 3°C and between 4° and 5°C over much of the landmass); i) climate projections suggest a continuation of the warming trend with an increase in mean annual temperatures of 4–5°C by 2080; ii) recent warming is already impacting the environment and economy of the Arctic and these impacts are expected to increase and affect also life style, culture and ecosystems; and iv) changes occurring in the Arctic are likely to affect other regions of the Earth, for example changes in snow, vegetation and sea ice are likely to affect the energy balance and ocean circulation at regional and even global scales (Chapter 1 in ref. 1). Responding to the urgent need to understand and project impacts of changes in climate and UV-B radiation on many facets of the Arctic, the Arctic Climate Impact Assessment (ACIA) (1) undertook a four-year study. Part of this study (1–10) assessed the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, both those changes already occurring and those likely to occur in the future. Here, we present the key findings of the assessment of climate change impacts on tundra and polar desert ecosystems, and xtended summaries of its components.
  •  
3.
  • Callaghan, Terry V., et al. (författare)
  • Responses to projected changes in climate and UV-B at the species level
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 418-435
  • Forskningsöversikt (refereegranskat)abstract
    • Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO 2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously associated with areas south of the treeline have been recorded. In contrast, almost all Arctic breeding bird species are declining and models predict further quite dramatic reductions of the populations of tundra birds due to warming. Species-climate response surface models predict potential future ranges of current Arctic species that are often markedly reduced and displaced northwards in response to warming. In contrast, invertebrates and microorganisms are very likely to quickly expand their ranges northwards into the Arctic.
  •  
4.
  • Callaghan, Terry V., et al. (författare)
  • Synthesis of effects in four Arctic subregions
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - : Royal Swedish Academy of Sciences. - 0044-7447. ; 33:7, s. 469-473
  • Tidskriftsartikel (refereegranskat)abstract
    • An assessment of impacts on Arctic terrestrial ecosystems has emphasized geographical variability in responses of species and ecosystems to environmental change. This variability is usually associated with north-south gradients in climate, biodiversity, vegetation zones, and ecosystem structure and function. It is clear, however, that significant east-west variability in environment, ecosystem structure and function, environmental history, and recent climate variability is also important. Some areas have cooled while others have become warmer. Also, east-west differences between geographical barriers of oceans, archipelagos and mountains have contributed significantly in the past to the ability of species and vegetation zones to relocate in response to climate changes, and they have created the isolation necessary for genetic differentiation of populations and biodiversity hot-spots to occur. These barriers will also affect the ability of species to relocate during projected future warming. To include this east-west variability and also to strike a balance between overgeneralization and overspecialization, the ACIA identified four major sub regions based on large-scale differences in weather and climate-shaping factors. Drawing on information, mostly model output that can be related to the four ACIA subregions, it is evident that geographical barriers to species re-location, particularly the distribution of landmasses and separation by seas, will affect the northwards shift in vegetation zones. The geographical constraints-or facilitation-of northward movement of vegetation zones will affect the future storage and release of carbon, and the exchange of energy and water between biosphere and atmosphere. In addition, differences in the ability of vegetation zones to re-locate will affect the biodiversity associated with each zone while the number of species threatened by climate change varies greatly between subregions with a significant hot-spot in Beringia. Overall, the subregional synthesis demonstrates the difficulty of generalizing projections of responses of ecosystem structure and function species loss, and biospheric feedbacks to the climate system for the whole Arctic region and implies a need for a far greater understanding of the spatial variability in the responses of terrestrial arctic ecosystems to climate change.
  •  
5.
  • Gallo-Cajiao, Eduardo, et al. (författare)
  • Implications of Russia’s invasion of Ukraine for the governance of biodiversity conservation
  • 2023
  • Ingår i: Frontiers in Conservation Science. - : Frontiers Media S.A.. - 2673-611X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintaining peace and conserving biodiversity hinge on an international system of cooperation codified in institutions, but Russia’s invasion of Ukraine brings recent progress to a crossroads. Against this backdrop, we address some implications of Russia’s invasion of Ukraine for the governance of biodiversity conservation both within and beyond Russia. The Russian invasion of Ukraine threatens the governance system for biodiversity conservation, as it pertains to Russia and beyond, due to three interacting factors: (i) isolation of Russia from the international system, (ii) halt and delay of international cooperation, and (iii) changes in international and domestic policy priorities. We recommend making the existing international system of governance for conserving biodiversity more resilient and adaptable, while aligning security agendas with biodiversity conservation goals. 
  •  
6.
  • Zöckler, Christoph, et al. (författare)
  • Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region
  • 2008
  • Ingår i: Climatic Change. - : Springer. - 0165-0009 .- 1573-1480. ; 87:1-2, s. 119-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to alter the distribution of habitats and thus the distribution of species connected with these habitats in the terrestrial Barents Sea region. It was hypothesised that wild species connected with the tundra and open-land biome may be particularly at risk as forest area expands. Fourteen species of birds were identified as useful indicators for the biodiversity dependent upon this biome. By bringing together species distribution information with the LPJ-GUESS vegetation model, and with estimates of future wild and domestic reindeer density, potential impacts on these species between the present time and 2080 were assessed. Over this period there was a net loss of open land within the current breeding range of most bird species. Grazing reindeer were modelled as increasing the amount of open land retained for nine of the tundra bird species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy