SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zabucchi Giuliano) "

Sökning: WFRF:(Zabucchi Giuliano)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Melo, Fabio rabelo, et al. (författare)
  • Proteolytic Histone Modification by Mast Cell Tryptase, a Serglycin Proteoglycan-dependent Secretory Granule Protease
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289:11, s. 7682-7690
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tryptase is a serglycin proteoglycan-dependent protease localized in mast cell granules. Results: Tryptase was found to degrade core histones, both during apoptosis and in viable cells. Conclusion: A serglycin-tryptase axis is identified as a novel mechanism for histone modification. Significance: Secretory granule compounds are implicated in the regulation of nuclear events. A hallmark feature of mast cells is their high content of cytoplasmic secretory granules filled with various preformed compounds, including proteases of tryptase-, chymase-, and carboxypeptidase A3 type that are electrostatically bound to serglycin proteoglycan. Apart from participating in extracellular processes, serglycin proteoglycan and one of its associated proteases, tryptase, are known to regulate cell death by promoting apoptosis over necrosis. Here we sought to outline the underlying mechanism and identify core histones as primary proteolytic targets for the serglycin-tryptase axis. During the cell death process, tryptase was found to relocalize from granules into the cytosol and nucleus, and it was found that the absence of tryptase was associated with a pronounced accumulation of core histones both in the cytosol and in the nucleus. Intriguingly, tryptase deficiency resulted in defective proteolytic modification of core histones even at baseline conditions, i.e. in the absence of cytotoxic agent, suggesting that tryptase has a homeostatic impact on nuclear events. Indeed, tryptase was found in the nucleus of viable cells and was shown to cleave core histones in their N-terminal tail. Moreover, it was shown that the absence of the serglycin-tryptase axis resulted in altered chromatin composition. Together, these findings implicate histone proteolysis through a secretory granule-derived serglycin-tryptase axis as a novel principle for histone modification, during both cell homeostasis and cell death.
  •  
2.
  • Melo, Fabio R., et al. (författare)
  • Tryptase-catalyzed core histone truncation : A novel epigenetic regulatory mechanism in mast cells
  • 2017
  • Ingår i: Journal of Allergy and Clinical Immunology. - : MOSBY-ELSEVIER. - 0091-6749 .- 1097-6825. ; 140:2, s. 474-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Mast cells are key effector cells in allergic reactions. When activated to degranulate, they release a plethora of bioactive compounds from their secretory granules, including mast cell-restricted proteases such as tryptase. In a previous study, we showed that tryptase, in addition to its intragranular location, can be found within the nuclei of mast cells where it truncates core histones at their N-terminal ends. Objective: Considering that the N-terminal portions of the core histones constitute sites for posttranslational modifications of major epigenetic impact, we evaluated whether histone truncation by tryptase could have an impact on epigenetic events in mast cells. Methods: Mast cells were cultured from wild-type and tryptase null mice, followed by an assessment of their profile of epigenetic histone modifications and their phenotypic characteristics. Results: We show that tryptase truncates nucleosomal histone 3 and histone 2B (H2B) and that its absence results in accumulation of the epigenetic mark, lysine 5-acetylated H2B. Intriguingly, the accumulation of lysine 5-acetylated H2B was cell age-dependent and was associated with a profound upregulation of markers of non-mast cell lineages, loss of proliferative control, chromatin remodeling as well as extensive morphological alterations. Conclusions: These findings introduce tryptase-catalyzed histone clipping as a novel epigenetic regulatory mechanism, which in the mast cell context may be crucial for maintaining cellular identity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy