SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zachos James) "

Sökning: WFRF:(Zachos James)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cramwinckel, Margot J., et al. (författare)
  • A Warm, Stratified, and Restricted Labrador Sea Across the Middle Eocene and Its Climatic Optimum
  • 2020
  • Ingår i: Paleoceanography and Paleoclimatology. - 2572-4517 .- 2572-4525. ; 35:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies indicate that North Atlantic Deep Water (NADW) formation might have initiated during the globally warm Eocene (56–34 Ma). However, constraints on Eocene surface ocean conditions in source regions presently conducive to deep water formation are sparse. Here we test whether ocean conditions of the middle Eocene Labrador Sea might have allowed for deep water formation by applying (organic) geochemical and palynological techniques, on sediments from Ocean Drilling Program (ODP) Site 647. We reconstruct a long‐term sea surface temperature (SST) drop from ~30°C to ~27°C between 41.5 to 38.5 Ma, based on TEX86. Superimposed on this trend, we record ~2°C warming in SST associated with the Middle Eocene Climatic Optimum (MECO; ~40 Ma), which is the northernmost MECO record as yet, and another, likely regional, warming phase at ~41.1 Ma, associated with low‐latitude planktic foraminifera and dinoflagellate cyst incursions. Dinoflagellate cyst assemblages together with planktonic foraminiferal stable oxygen isotope ratios overall indicate low surface water salinities and strong stratification. Benthic foraminifer stable carbon and oxygen isotope ratios differ from global deep ocean values by 1–2‰ and 2–4‰, respectively, indicating geographic basin isolation. Our multiproxy reconstructions depict a consistent picture of relatively warm and fresh but also highly variable surface ocean conditions in the middle Eocene Labrador Sea. These conditions were unlikely conducive to deep water formation. This implies either NADW did not yet form during the middle Eocene or it formed in a different source region and subsequently bypassed the southern Labrador Sea.
  •  
2.
  • Hansen, James, et al. (författare)
  • Assessing Dangerous Climate Change : Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:12, s. e81648-
  • Forskningsöversikt (refereegranskat)abstract
    • We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of similar to 500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of similar to 1000 GtC, sometimes associated with 2 degrees C global warming, would spur slow feedbacks and eventual warming of 3-4 degrees C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.
  •  
3.
  • Lunt, Daniel J., et al. (författare)
  • The DeepMIP contribution to PMIP4 : experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0)
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:2, s. 889-901
  • Tidskriftsartikel (refereegranskat)abstract
    • Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high (>800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (similar to 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 x CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleo-climate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
  •  
4.
  • Slotnick, Benjamin S., et al. (författare)
  • Large-Amplitude Variations in Carbon Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest Eocene : The Record at Mead Stream, New Zealand
  • 2012
  • Ingår i: The Journal of geology. - : University of Chicago Press. - 0022-1376 .- 1537-5269. ; 120:5, s. 487-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The late Paleocene to early Eocene was marked by major changes in Earth surface temperature and carbon cycling. This included at least two, and probably more, geologically brief (<200-k.yr.) intervals of extreme warming, the Paleocene-Eocene thermal maximum (PETM) and the Eocene thermal maximum-2 (ETM-2). The long-term rise in warmth and short-term hyperthermal events have been linked to massive injections of C-13-depleted carbon into the ocean-atmosphere system and intense global climate change. However, the causes, environmental impact, and relationships remain uncertain because detailed and coupled proxy records do not extend across the entire interval of interest; we are still recognizing the exact character of the hyperthermals and developing models to explain their occurrence. Here we present lithologic and carbon isotope records for a 200-m-thick sequence of latest Paleocene-earliest Eocene upper slope limestone exposed along Mead Stream, New Zealand. New carbon isotope and lithologic analyses combined with previous work on this expanded section shows that the PETM and ETM-2, the suspected H-2, I-1, I-2, and K/X hyperthermals, and several other horizons are marked by pronounced negative carbon isotope excursions and clay-rich horizons. Generally, the late Paleocene-early Eocene lithologic and delta C-13 records at Mead Stream are similar to records recovered from deep-sea sites, with an important exception: lows in delta C-13 and carbonate content consistently span intervals of relatively high sedimentation (terrigenous dilution) rather than intervals of relatively low sedimentation (carbonate dissolution). These findings indicate that, over similar to 6 m.yr., there was a series of short-term climate perturbations, each characterized by massive input of carbon and greater continental weathering. The suspected link involves global warming, elevated greenhouse-gas concentrations, and enhanced seasonal precipitation.
  •  
5.
  • Bralower, Timothy, et al. (författare)
  • Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact
  • 2020
  • Ingår i: Earth and Planetary Science Letters. - Amsterdam : Elsevier. - 0012-821X .- 1385-013X. ; 548
  • Tidskriftsartikel (refereegranskat)abstract
    • Microcrystalline calcite (micrite) dominates the sedimentary record of the aftermath of the Cretaceous–Paleogene (K–Pg) impact at 31 sites globally, with records ranging from the deep ocean to the Chicxulub impact crater, over intervals ranging from a few centimeters to more than seventeen meters. This micrite-rich layer provides important information about the chemistry and biology of the oceans after the impact. Detailed high-resolution scanning electron microscopy demonstrates that the layer contains abundant calcite crystals in the micron size range with a variety of forms. Crystals are often constructed of delicate, oriented agglomerates of sub-micrometer mesocrystals indicative of rapid precipitation. We compare the form of crystals with natural and experimental calcite to shed light on their origin. Close to the crater, a significant part of the micrite may derive from the initial backreaction of CaO vaporized during impact. In more distal sites, simple interlocking rhombohedral crystals resemble calcite precipitated from solution. Globally, we found unique calcite crystals associated with fossilized extracellular materials that strikingly resemble calcite precipitated by various types of bacteria in natural and laboratory settings. The micrite-rich layer contains abundant bacterial and eukaryotic algal biomarkers and most likely represents global microbial blooms initiated within millennia of the K–Pg mass extinction. Cyanobacteria and non-haptophyte microalgae likely proliferated as dominant primary producers in cold immediate post-impact environments. As surface-water saturation state rose over the following millennia due to the loss of eukaryotic carbonate producers and continuing river input of alkalinity, “whitings” induced by cyanobacteria replaced calcareous nannoplankton as major carbonate producers. We postulate that the blooms grew in supersaturated surface waters as evidenced by crystals that resemble calcite precipitates from solution. The microbial biomass may have served as a food source enabling survival of a portion of the marine biota, ultimately including life on the deep seafloor. Although the dominance of cyanobacterial and algal photosynthesis would have weakened the biological pump, it still would have removed sufficient nutrients from surface waters thus conditioning the ocean for the recovery of biota at highertrophic levels.
  •  
6.
  • Coxall, Helen K., et al. (författare)
  • Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation
  • 2018
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 11:3, s. 190-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.
  •  
7.
  • Hempel, Elisabeth, et al. (författare)
  • Identifying the true number of specimens of the extinct blue antelope (Hippotragus leucophaeus)
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:2100
  • Tidskriftsartikel (refereegranskat)abstract
    • Native to southern Africa, the blue antelope (Hippotragus leucophaeus) is the only large African mammal species known to have become extinct in historical times. However, it was poorly documented prior to its extinction ~ 1800 AD, and many of the small number of museum specimens attributed to it are taxonomically contentious. This places limitations on our understanding of its morphology, ecology, and the mechanisms responsible for its demise. We retrieved genetic information from ten of the sixteen putative blue antelope museum specimens using both shotgun sequencing and mitochondrial genome target capture in an attempt to resolve the uncertainty surrounding the identification of these specimens. We found that only four of the ten investigated specimens, and not a single skull, represent the blue antelope. This indicates that the true number of historical museum specimens of the blue antelope is even smaller than previously thought, and therefore hardly any reference material is available for morphometric, comparative and genetic studies. Our study highlights how genetics can be used to identify rare species in natural history collections where other methods may fail or when records are scarce. Additionally, we present an improved mitochondrial reference genome for the blue antelope as well as one complete and two partial mitochondrial genomes. A first analysis of these mitochondrial genomes indicates low levels of maternal genetic diversity in the ‘museum population’, possibly confirming previous results that blue antelope population size was already low at the time of the European colonization of South Africa.
  •  
8.
  • Raffi, Isabella, et al. (författare)
  • The response of calcareous nannofossil assemblages to the Paleocene/Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic
  • 2009
  • Ingår i: Marine Micropaleontology. - : Elsevier. - 0377-8398 .- 1872-6186. ; 70:3-4, s. 201-212
  • Tidskriftsartikel (refereegranskat)abstract
    • Compositions and abundances of calcareous nannofossil taxa have been determined in a ca 170 kyrs long time interval across the Paleocene/Eocene boundary at 1-cm to 10-cm resolution from two ODP Sites (1262, 1263) drilled along the flank of the Walvis Ridge in the South Atlantic. The results are compared to published data from ODP Site 690 in the Weddell Sea. The assemblages underwent rapid evolution over a 74 kyrs period, indicating stressed, unstable and/or extreme photic zone environments during the PETM hyperthermal. This rapid evolution, which created 5 distinct stratigraphic horizons, is consistent with the restricted brief occurrences of malformed and/or weakly calcified morphotypes. The production of these aberrant morphotypes is possibly caused by major global scale changes in carbon cycling in the ocean–atmosphere system, affecting also photic zone environments. No marked paleoecologically induced changes are observed in abundances of the genera Discoaster, Fasciculithus and Sphenolithus at the Walvis Ridge sites. Surprisingly, there is no significant correlation in abundance between these three genera, presumed to have had a similar paleoecological preference for warm and oligotrophic conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy