SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zaheer A) "

Sökning: WFRF:(Zaheer A)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Ali, Zaheer, et al. (författare)
  • Photoreceptor Degeneration Accompanies Vascular Changes in a Zebrafish Model of Diabetic Retinopathy
  • 2020
  • Ingår i: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 61:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Diabetic retinopathy (DR) is a leading cause of vision impairment and blindness worldwide in the working-age population, and the incidence is rising. Until now it has been difficult to define initiating events and disease progression at the molecular level, as available diabetic rodent models do not present the full spectrum of neural and vascular pathologies. Zebrafish harboring a homozygous mutation in the pancreatic transcription factor pdx1 were previously shown to display a diabetic phenotype from larval stages through adulthood. In this study, pdx1 mutants were examined for retinal vascular and neuronal pathology to demonstrate suitability of these fish for modeling DR. METHODS. Vessel morphology was examined in pdx1 mutant and control fish expressing the fli1a:EGFP transgene. We further characterized vascular and retinal phenotypes in mutants and controls using immunohistochemistry, histology, and electron microscopy. Retinal function was assessed using electroretinography. RESULTS. Pdx1 mutants exhibit clear vascular phenotypes at 2 months of age, and disease progression, including arterial vasculopenia, capillary tortuosity, and hypersprouting, could be detected at stages extending over more than 1 year. Neural-retinal pathologies are consistent with photoreceptor dysfunction and loss, but do not progress to blindness. CONCLUSIONS. This study highlights pdx1 mutant zebrafish as a valuable complement to rodent and other mammalian models of DR, in particular for research into the mechanistic interplay of diabetes with vascular and neuroretinal disease. They are furthermore suited for molecular studies to identify new targets for treatment of early as well as late DR.
  •  
4.
  • El-Segaier, Milad, et al. (författare)
  • Recombinant Tissue Plasminogen Activator in the Treatment of Neonates with Intracardiac and Great Vessels Thrombosis
  • 2015
  • Ingår i: Pediatric Cardiology. - : Springer Science and Business Media LLC. - 0172-0643 .- 1432-1971. ; 36:8, s. 1582-1587
  • Tidskriftsartikel (refereegranskat)abstract
    • Life-threatening intracardiac and great vessels thrombi are rare in neonates. Recombinant tissue plasminogen activator (rTPA) is used in adults to stimulate fibrinolysis and facilitate thrombus resolution. Its use in neonates, along with heparin, remains controversial because of potential risk of serious bleeding. We aim to present our experience with the use of thrombolytic agents in seven neonates and young infants. In a retrospective study, over a period of 6 years, the medical records of neonates and young infants, who were diagnosed with intracardiac and great vessels thrombi, were reviewed. The following factors were collected: demographic data, primary diagnosis, thrombus site, risk factors, method of diagnosis, thrombolytic and/or anticoagulation agent, route, dose and duration of treatment, complications, and outcome. Six neonates and one 45-day-old infant were analyzed. Age ranged from 5 to 45 days (median age 12 days), and median weight was 2.9 kg (range 0.9-3.8 kg). The thrombi were diagnosed by echocardiography in five and by angiography in two cases. All patients had life-threatening thrombi; four were treated with rTPA (0.5 mg kg(-1) h(-1)) and heparin infusions with complete dissolution of the thrombi, within a median time of 60 h (6-72 h), and without complications. The remaining three patients (two who were premature, at 28 and 34 weeks of gestation, and the third who had a deranged coagulation profile) were treated with unfractionated heparin due to fear of bleeding. The thrombi dissolved in the premature babies (within 2 weeks and 3 months, respectively) but embolized and resulted in the death of the third infant after 2 weeks of treatment. The current case series confirmed the effectiveness and safety of intravenous rTPA infusion, at the dosages used, in neonates and young infants with life-threatening thrombi.
  •  
5.
  • Karjosukarso, Dyah W., et al. (författare)
  • Modeling ZNF408-Associated FEVR in Zebrafish Results in Abnormal Retinal Vasculature
  • 2020
  • Ingår i: Investigative Ophthalmology and Visual Science. - : ASSOC RESEARCH VISION OPHTHALMOLOGY INC. - 0146-0404 .- 1552-5783. ; 61:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. METHODS. Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. RESULTS. Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. CONCLUSIONS. Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.
  •  
6.
  • Khan, Farooq-Ahmad, et al. (författare)
  • Designing Functionally Substituted Pyridine-Carbohydrazides for Potent Antibacterial and Devouring Antifungal Effect on Multidrug Resistant (MDR) Strains
  • 2023
  • Ingår i: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 28:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16-24 mu g/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 mu g/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy