SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zahoranszky Kohalmi G.) "

Sökning: WFRF:(Zahoranszky Kohalmi G.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oprea, Tudor I, et al. (författare)
  • Unexplored therapeutic opportunities in the human genome
  • 2018
  • Ingår i: Nature Reviews Drug Discovery. - : Springer Science and Business Media LLC. - 1474-1776 .- 1474-1784. ; 17:5, s. 317-332
  • Tidskriftsartikel (refereegranskat)abstract
    • A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.
  •  
2.
  • Zahoranszky-Kohalmi, G., et al. (författare)
  • Workflow of Integrated Resources to Catalyze Network Driven COVID-19 Research
  • 2022
  • Ingår i: Journal of Chemical Information and Modeling. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 62:3, s. 718-729
  • Tidskriftsartikel (refereegranskat)abstract
    • In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy. Here, we describe a workflow we designed for a semiautomated integration of rapidly emerging data sets that can be generally adopted in a broad network pharmacology research setting. The workflow was used to construct a COVID-19 focused multimodal network that integrates 487 host-pathogen, 63 278 host- host protein, and 1221 drug-target interactions. The resultant Neo4j graph database named "Neo4COVID19" is made publicly accessible via a web interface and via API calls based on the Bolt protocol. Details for accessing the database are provided on a landing page (https://neo4covid19.ncats.io/). We believe that our Neo4COVID19 database will be a valuable asset to the research community and will catalyze the discovery of therapeutics to fight COVID-19.
  •  
3.
  • Zahoranszky-Kohalmi, G., et al. (författare)
  • SmartGraph: a network pharmacology investigation platform
  • 2020
  • Ingår i: Journal of Cheminformatics. - : Springer Science and Business Media LLC. - 1758-2946. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Drug discovery investigations need to incorporate network pharmacology concepts while navigating the complex landscape of drug-target and target-target interactions. This task requires solutions that integrate high-quality biomedical data, combined with analytic and predictive workflows as well as efficient visualization. SmartGraph is an innovative platform that utilizes state-of-the-art technologies such as a Neo4j graph-database, Angular web framework, RxJS asynchronous event library and D3 visualization to accomplish these goals. Results The SmartGraph framework integrates high quality bioactivity data and biological pathway information resulting in a knowledgebase comprised of 420,526 unique compound-target interactions defined between 271,098 unique compounds and 2018 targets. SmartGraph then performs bioactivity predictions based on the 63,783 Bemis-Murcko scaffolds extracted from these compounds. Through several use-cases, we illustrate the use of SmartGraph to generate hypotheses for elucidating mechanism-of-action, drug-repurposing and off-target prediction. Availability: https://smartgraph.ncats.io/. .
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy